FORENSIC PRACTICE

Pawel Olber

Expert in the field of forensic IT examination, Voivodeship Police Forensic Laboratory in Olsztyn

pawel.olber@ol.policja.gov.pl

The use of EnCase Forensic program scripts in forensic
research of digital data carriers

Summary

The purpose of this work is to present users of EnCase Forensic programming language syntax, EnScript, to
create their ownsoftware solutions, as well as to provide the possibility of its use in forensic research of digital
storage media. In order to understand above described elements, description elements above, practical
programming examples are given. Examples in this paper allow you to understand the existing code, scripts,
contained, among others, in the EnCase API documentation. This documentation is the best source to get
detailed information about the above classes of the above mentioned programming language, its components
and functions. In addition to the aforementioned document, there are a number of applications created by
EnScript programming language enthusiasts on Internet, which make it easy to write your own scripts, and
represent a valuable source of information and inspiration. The advantage of knowing the above mentioned
programming language is the ability to create ones own software solutions, allowing for the automation of
tasks carried out within the context of investigative analysis, which is a very important element in the work of

investigative science.
Keywords Encase Forensic, EnCase API, EnScript

Introduction and purpose of the article

This publication provides an overview of the EnScript
programming language, defined in the EnCase
Forensic program, which belongs to the one of the most
respected computer forensic programs (computer
forensic) in the world. The conducted examinations
concerning programming languages mentioned above,
are based in particular on work in the EnCase Forensic
program, which has built-in own IT environment and
includes some scripts enabling automation of time-
consuming investigative analyses. The IT environment
of the above-mentioned program is quite simple
and lacks many useful functions for formatting the
source code. Therefore, the sample scripts describing
the syntax of the EnScript language will be written
using Microsoft Visual C++ Express software that is
configured in such a way as to be compatible with
the EnCase program. Microsoft Visual C ++ Express
allows maintaining clear and transparent structure of
created scripts, which facilitates their analysis and
understanding, and avoiding programming errors.
Information on the syntax of the EnScript programming
language will be collected primarily as a result of the
analysis of the script source code contained in the
so-called AP/ documentation of the EnCase Forensic

program. In addition, scripts available on the Internet
will be examined, created by enthusiasts of the above
mentioned programming language.

The the first part of this article the author will
present basic information and concepts of the Enscript
programming language. Then a simple program will
be presented that will be the starting point for the
creation of more complex applications. Subsequently,
the syntax structure of the Enscript programming
language will be clarified and, in particular, the basic
data types, complex variables, control instructions,
operations on variables, as well as issues related to
object-oriented programming. At the end, the author's
software solutions will be presented, formed for the
purpose of ongoing forensic casework.

The aim of author's endeavours is to discuss the
EnScript programming language, defined in the
EnCase Forensic program and to show its potential
in forensic examination of digital data carriers. The
information contained in this publication should be
useful to those in charge of computer forensics, in
the creation of proprietary analytical tools used for
automation of time-consuming tasks performed during
the analyses. The present publication seems to be
of value due to no specific training on the discussed
issue available within the police.

ISSUES OF FORENSIC SCIENCE 288(2) 2015

71

FORENSIC PRACTICE

Enscript — basic information

Enscript is an object-oriented programming language
based on the syntax of two languages: C ++ and Java.
This language allows the automation of the tasks
being performed as well as the simplification of many
time-consuming activities carried out in the course
of examinations, such as searching and analysing
specific types of documents, processing and extraction
of data stored in different types of files, creating files
containing hash functions etc. Using the programming
language, it is also possible to process the information
selected by analysis of the data added to bookmarks
or records.

Enscript — syntax

To begin learning how to create scripts in EnScript
language, the user should be provided with some
knowledge on basic issues and terminology
regarding programming. In this article, the structure of
a program, the course of processing its components
and functions will be also discussed. The knowledge
of these issues is quite important because it will
help the user further to understand the source
code of created applications and will allow for an
effective analysis of existing scripts, among others,
present in EnCase and available on the Internet.

Whitespace

Whitespace, i.e. spaces, tabs, and new line markers
are not relevant in the source code and are ignored
by the compiling program, which translates the source
code into machine language.

Comments

Any portion of the software source code may be
subject to commentary. The comment is completely
ignored by the compiler, however it can be useful for
writing and reading the code. Comments are used to
describe, to clarify certain parts of the program code,
to separate parts of the code and labelling functions.
In the EnScript language there are two possible ways
of commenting code: line and block.

Example:

class MainClass {
void Main(CaseClass c) {

// Example of line comment.

/* Example of block comment,
that can span multiple lines.

*f

Directive include

In the language of EnScript, include is called
a directive — information about joining contents of
a specified file with the extension enscript to the

compiled source file, referred to as a library. The

libraries contain functions that can be used in the
source file. The file name is given without an extension.
Example:

include
include "GS eepCaselib
include "GSI_DefaultModules

Directive typelib

In the EnScript language, typelib is used to connect,
to the compiled source file, contents of a specified file,
called the library, derived from an external application
such as programs of the Microsoft Office packet.

Example:

typelib Excel "Excel.Shee
typelib Scripting "Scripting.FileSystemObject"”
#ifdef Excel
class MainClass {
void Main() {
SystemClass::ClearConsole();
CreateExcel();
1
void CreateExcel() {
Excel::Application app;
if (app.Create()) {
app.SetVisible(true);
Excel: :Workbooks books
Excel: :Workbook book
Excel::Sheets sheets book.Worksheets();
Excel: :Wordsheet sheet Excel: :Worksheet &
1:TypeCast(sheets.Item(1));
Excel::Range cells = sheet.Cells();

app.Workbooks();
books.Add();

(I | O | B

AddTable(cells);
AddPieChart(sheet);
}
}
Console

The console is actually a file, the contents of which
are displayed in the preview window of EnCase
Forensic. The console is available by pressing the tab
"Console" (V6) or via the menu: View -> Console (V7)
and it allows viewing all sorts of messages and other
content, e.g. information about the progress of the
program. In order to display a message in the console,
the command WriteLine() should be used.

The first program

Conventional books about programming start
programming lessons with a presentation of an
application that displays a sentence in a console or
in a screen: "Hello World". This convention is also
followed in this publication. The first program will
be a starting point for more complex applications
that allow to understand the syntax of the EnScript
language.

72

ISSUES OF FORENSIC SCIENCE 288(2) 2015

FORENSIC PRACTICE

Example:

class MainClass {
void Main(CaseClass c) {

Console.WriteLine("Hello World");

}

Result:

Hello World

The main class of the program

The program, written in EnScript is a set of variables,
definitions and function calls. Each script created by
EnCase has the class name MainClass, within which
the Main function can be found, as a parameter
adopting a variable of the CaseClass type, which is
the equivalent of matter created by the user of the
program. Inside the MainClass, other classes and
functions are defined. When you run the script, the
EnCase program localizes the MainClass object
and calls its constructor. The issues considering the
constructors will be presented later in the subsequent
part of this publication. Then the aforementioned
object calls the function Main, which is preceded by
the keyword void. This means that the function does
not return any data. Finally, the program EnCase runs
the destructor of the MainClass and ultimately removes
the object of the main class. At this point, the program
terminates.

The concept of the variable, and the basic data
types

Variable is the place in the operational memory of
a computer which stores a single value of a specified
type. Each variable has a name, enabling to make
a reference. Before you start, the variable should be
declared, in other words, the compiler should be
informed that this name stands for a variable of a given
data type. Variable declaration syntax is as follows:

type variable_name = variable_value;

The type specifies the sort of information that can
be stored in a variable. These can be, for example,
integers, real numbers, and chains of characters,
called strings. The name of a variable should well
state its importance and meet certain criteria. Here are
some of them:

e variable name should be a word or an

abbreviation that specifies its purpose

* name may consist of lower case and upper case

letters as well as numbers and the underscore
character. It should be noted that the variable
name cannot begin with a digit. Unlike other

programming languages, the name of the
variable can contain national characters such as
the letters ¢ or Z.

The EnScript language supports different data
types natively, which means that conversions between
different types of data are performed automatically and
the use of a specific type is permitted in any context.

Example:

class MainClass {
void Main(CaseClass c¢) {

// declaration of variable "i’
// assign value 1 to the variable
ine 4 = I;

// displaying the value of variable "i"
Console.Writeline(i = + 1i);

// adding value 1 to the
// declared variable

1, = 4 w13

Console.WriteLine("i = " + i);

Result:

=
non
=

Basic data types

Data types specify the manner of using memory in
the program. Specifying the data type, the information
is passed to the compiler how to create a specific
section of the memory and how to perform operations
on it. Data of different types differ in the speed of
action, the size of occupied memory, and of course,
functionality; for example, there is data that can be
multiplied by themselves as well as data that does not
perform multiplication operation at all — even texts.

char

The variable of type char stores one character.
UNICODE characters with codes from 0 to 65535 can
be assigned to a variable of this type. Variables of
char type can be assigned as integers (inf) and vice
versa, integer variables can be assigned to variable
characters. In the event of such an operation, EnScript
converts the characters in accordance with the ASCII
encoding. In ASCII code lower case "a" is assigned
to the value of 97. When a variable of the char type
is assigned to a character, it is in fact a number
from 0 to 255. However, one should be aware of
the difference between a value, and a character, for
example: 5 and "5" is not the same because 5 is
a value, however "5" is a character and has the value
of 53, as is in the case of the letter "a", which has
the value of 97.

ISSUES OF FORENSIC SCIENCE 288(2) 2015

73

FORENSIC PRACTICE

Example:

class MainClass {
void Main(CaseClass c) {

ing number 82 to the variable int
B

variable 'i’
+ i);

// displaying the value of
Console. wrlteLlne(‘;

assigning variable 'i' to the char
/ type variable
char a = i;
/ displaying the value of variable ‘a
Console.Writeline(g + a);
/ agsigni g a character to the char type
/ ype variable
:hab b = 5
/ displaying the value of variable 'b
Console.WritelLine(+ b);
/ b' to the variable ']
“.l
displaying the value of variable 'j'
Console. WFltELlnE(+ 3);
Result:
i=282
a =R
b=v
j = 118
String

The variable String stores character strings (text),
which can perform a number of operations. Strings
can be concatenated together using the "+" operator.

Example:

class MainClass {
void Main(CaseClass c) {
// Cleaning the console display

SystemClass::ClearConsole();

// Assigning value to the variable sl
String s1 = "Hello";

//" Assigning value to the variable s2
String s2 = " World"

// Variable s1 obtalns value "Hello World"
sl = s1 + s2;

// Variable s1 obtains value
sl =51+ ".";

// Starting a new line

sl = s1 + n's

// Displaying the console output
Console.Write(sl);

"Hello World."

Result:

Hello World.

Strings may contain special characters. In order
to use special characters in the text, one should
use a backslash (backslash). The group of special
characters includes: tab, slash, single quotation mark,
newline.

Example:

class MainClass {
void Main(CaseClass c) {

SystemClass::ClearConsole();

String s1 = "Tab backslash \\, &

Console.Write(sl);

Result:

"

Tab, backslash \, single quotation marks ",
newline

It is also possible to include in text additional special
characters from UNICODE, for example trademark
symbol ®. This character should be written with a slash
in hexadecimal form’.

Example:

class MainClass {
void Main(CaseClass c) {

SystemClass::ClearConsole();
String s1 = "This is the trademark symbol: ¢
XBOAE";

Console.Write(sl);
String s2 = "The Russian alphabet:
Console.Write(s2);

}

}
Result:

This is the trademark symbol: ®
The Russian alphabet: J

1 TA table of UNICODE is available at the following
address: http://unicode-table.com/en/.

74

ISSUES OF FORENSIC SCIENCE 288(2) 2015

FORENSIC PRACTICE

Because all characters in quotation marks are
significant, including white space, you cannot insert
a new row in the middle of a chain.

Example:

class MainClass {
void Main(CaseClass c) {

SystemclaSS"ClearConsole();

rrrrrrrrrrr nnection

g1 = .
that cannot be saved in thls form.
Running the script will fail

If you want to connect very long strings, just put
them in quotation marks, one after another. Strings will
be merged at compile time of the program. In the case
of very long strings, do not use the operator connect
"+”, because this will cause unnecessary lengthening
of the compile-time of the program.

Example:

class MainClass {
void Main(CaseClass c¢) {

:ClearConsole();

connection of very

O

SystemClass
ff Correct

sl =

Console.WritelLine(s1);
}
by

Result:

This is a very long text that has been saved
correctly.
Running the script succeeds.

Strings can be treated as an array of characters and
addressed individually. Note: Indexing always takes
place from 0. The last item has an index equal to the
size of the table-1.

Example:

s MainClass {
void Main(CaseClass c) {

SystemClass::ClearConsole();
String s = : 890" ;
Console. wrlteLlne(> orig st T+
s);
Displaying value 1
Console. wrlteLlne() S : &

/ Empty line

Console wrlteLlne();

Console.WriteLine(+5);
Console.WritelLine(" first character of &
the string: " + s);
}
I3
Result:

The original string: 1234567890
The first character of the string: 1

New string: X23456789@
The first character of the string: X

Numeric data types

In the EnScript language there are seven numeric
data types. Numeric types have a fixed size, regardless
the process and platform. Part of the numeric types
have similar names, they differ in only the first letter
of u. In the EnScript language this is a so called
modifier, and by using it one can somewhat influence
the scope of the data that can be stored in variables.
The modifier is nothing other than a way to identify
different varieties of one type. The modifier u specifies
that the type represents only positive data. All numeric
data types of the EnScript language are presented in
tabular form and sorted according to the size of the
data that can be stored:

Table 1 Statement of the numeric data types

Type Size (B) Min. value Max. value

Short 2 -32768 32767
Ushort 2 0 65535

Int 4 -2147483648 2147483647

Uint 4 0 4294967295

Long 8 -9223372032559808513 9223372032559808512
Ulong 8 0 18446744065119617025
Double 8 -1.79 * 1E+308 1.79 * 1E+308

ISSUES OF FORENSIC SCIENCE 288(2) 2015

75

FORENSIC PRACTICE

Example: void

This special empty data type is used to indicate that
the function does not return any result. Example of the
use of the above mentioned type was also presented

class MainClass {
void Main(CaseClass c¢) {
// Cleaning the console display

SystemClass: :ClearConsole(); during the discussion of the function.
Example:
// Short type variable
short short_min_value = -32768; class MainClass {
short short_max_value = 32767; void Main(CaseClass c) {
Console.Writeline(: f a variable
s il 5) y + short_min_value); // Cleaning the console display
Console.Writeline(lue of g : SystemClass::ClearConsole();
he) + short_max_value); // Calling NoData() function;
Console.WritelLine(" - -—-"}; NoData();
// Unshort type variable // Calling ReturnData() function
ushort ushort_min value = 8; // and assigning the returned value
ushort ushort_max_value = 65535; // to the variable 'text'
Console.Writeline(e of a ab] String test = ReturnData();
pe short " + ushort_min_value); Console.WritelLine(text);
Console.WritelLine(of a variab] }
-ty + ushort_max_value);
Console.Writeline(: ‘); // Void type function - returns no values
void NoData(){
// Int type variable Console.Writeline('The iction NoRetur g
int int_min_value = -2147483648; oe = ret Y)i
int int_max_value = 2147483647; }
Console.WriteLine("Min. value of a variable &
of type 'in + int_min_value); // String type function - returns text
Console.WritelLine(’ alue of a variable String ReturnData(){
of e 'int + int_max_value); String msg = "The f J
Console.WritelLine(- s B eturns ; ue a &
// Unit type variable return msg;
unit unit_min_value = @; }
unit unit_max_value = 4294967295;
Console.WriteLine("Min. value of a variable ¢ }
of type ‘unit': " 4 unit_min_value);
Console.Writeline(lue of ariable .
it " + unit_max_value); Resuit:
Console.WriteLine("-----------—~-—---c---");
Console.Writeline(s1); The function NoReturn() does not return any
} value.
} The function ReturnData() returns a value of
a variable of the String type.
Wynik:
variant
L ;] g The variable of variant type stores data of any type.
T;g;sgalue GF B VRElable oF Bl BIgne It also contains a reference to the object representing
Max. value of a variable of type 'short': 32767 the assigned value, which is available using the
... function Type).
Min. value of a variable of type 'ushort': @ Example:
Max. value of a variable of type 'ushort':
65535 class MainClass {
--- void Main(CaseClass c) {
Min. value of a variable of type 'int'
-2147483648 // Cleaning the console display
Max. value of a variable of type 'int' SystemClass::ClearConsole();
2147483647
--- // Declaration of variant type variables
Min. value of a variable of type 'uint': @ variant vl = "Hello",
Max. value of a variable of type ‘'uint': v2 = 100,
4294967295 v3 = 2.5;

76 ISSUES OF FORENSIC SCIENCE 288(2) 2015

FORENSIC PRACTICE

Console.Writeline(: type " &
+ vl.Type(). Name() + + vl);
Console.Writeline(sariab] f type " &
+ v2.Type(). Name() + + v2);
Console.WritelLine(/ f type " &
+ v3.Type(). Name() + + v3);
b
}
Result:

A variable of type String = Hello
A variable of type int = 100
A variable of type double = 2.5

bool

The simplest, however quite commonly used data
type is the logical. Its determination is the keyword boo/
{(an acronym Boolean — logical). One assigns only the
value of true (1) or false (0) o the logical variable type.
A variable of this type is most often used to determine
whether something is included or disabled, true or
false.

Example:

class MainClass {

// Method that changes the value of
// variable 'b' into false
void Zmien(bool &b) {

b = false;

}

void Main() { // Main Class
// Cleaning the console display
SystemClass: :ClearConsole();
// Assigning value 'true' to the variable 'b’
bool b = true;

Console.Writeline("Value of the logical &
sariable + b);

Zmien(b); // ”‘arlgo of the value of the
// variable 'b’

Console.WritelLine("Value of the variable ¢
Fte "3 b}_;
// 1f the condition if true, the message
// will be displayed
if (b ==0) {
Console wrlteLlne(ditic 2' is &
")
}
¥
}
Result:

Value of the logical variable b =
Value of the variable (b) after the change: ©
Condition 'b = @' is true

Complex variables

Enum variable type

The enum variable type allows the association
of names with numbers. Enum is declared using
the keyword enum (derived from C language), that
automatically numbers the list of constants, giving
them a value of: 0, 1, 2, and so on. The enum type

declaration recalls the declaration structure.

enum type name {constant_1 [= value],...}

The default value for the first constant in the enum
type is 0. The value of each next constant takes the
value 1 greater than the preceding constant. Each
constant can be defined with a specified value. If any
of the values is not specified, then it will be calculated

on the basis of the value of the previous one.

Example:
class MainClass {
// Enum numbers

enum Numbers {
// Names of contents

One, // Value = @
Two, // Value = 1
Three = 20, // Value = 20
Four, // Value = 21

Five = Three + 10 // Value = 38

}

void Main(CaseClass ¢) {
// Cleaning the console display
SystemClass::ClearConsole();

Console.WriteLine("Valu: &
+ Numbers::0ne);
Console.WriteLine("Valus L
+ Numbers::Two);
Console.Writeline("Valu P
+ Numbers::Three);
Console.WritelLine(
+ Numbers::Four);
Console.WriteLine("Valus &
+ Numbers::Five);

}
i

Wynik:
Value = @
Value = 1
Value = 20
Value = 21
Value = 3@

The name of the enum constant can be obtained
by its value. To do this, you must use a static function

called SourceText().

ISSUES OF FORENSIC SCIENCE 288(2) 2015

77

FORENSIC PRACTICE

Example:
class MainClass {

enum Numbers {
One, @
Two, 1
Three = 20, 20
Four, 21
Five = Three + 10 30

}

void Main(CaseClass c) {

/ Cleaning the console display
SystemClass::ClearConsole();
Console.WriteLine("C &

+ Numbers::SourceText(e)},
Console.WriteLine("Cc g
+ Number‘s::SourceText(l))J
Console.WriteLine(: &
+ Numbers::SourceText(Za)),
Console.WritelLine("Consta &
+ Numbers::SourceText(Zl)},
Console.WriteLine("Cons
+ Numbers::SourceText(3B));
1
by
Result:

Constant name: One
Constant name: Two
Constant name: Three
Constant name: Four
Constant name: Five

Array

An array is a structure consisting of the specified
number of elements of the same type. All the elements
of an array are placed in your computer's memory
together in one place and each element can reference
the array name and index, specifying the item number.

0 1 2 3 4 5

An array is created by using the keyword typedef,
after which the type of data stored in the array is
specified. When you create an array, you can declare
and initialize a variable of an array type.

typedef type_ array StringArray;

Example:

class MainClass {

Creation of two arravs
eati c WO ays

typedef Strlng[] StrlngArray,
typedef int[] IntArray;

oid Main(CaseClass c¢) {

Declaration of a

Declaratio array variable 'surname'’
StringArray surname(3);
/ Assigning the values
surname[@] = "Kowalski’;
surname[1] = "Nowak';
surname[2] = "Mikulski™;
Declaration of array variable 'number

IntArray number(3);

enine the va

Aaz_ﬁ‘_‘, tn ,'::
number[@] = 1;
number[1] = 2;
number[z] = 3;
isplaying the value of the array

foreach (Strlng s in surname){
Console.WriteLine(s);

Iy

Console.WriteLine("number[2] = “ + number[2]);

Result:

Kowalski
Nowak
Mikulski
number[2] =

You can initialize an array at the time of its
declaration. After the name of the array there must be
curly brackets ({}) indicating the value of the next array
elements. On the basis of the number of initial values,
the compiler automatically defines the size of the array.

Type_table variable_name {index[@], index[1]

N

Example:
class MainClass {

'/ Creation of arra
Creation of a ray

typedef String[] StringArray;

void Main(CaseClass c) {

Displaying the value o a

foreach (String s in surname) {
Console.WritelLine(s);

of the arr

}

78

ISSUES OF FORENSIC SCIENCE 288(2) 2015

FORENSIC PRACTICE

Result: Result:
Kowalski m[e][e] = 1
Nowak m[e][e] = 2
Mikulski m[e][1] = 3

m[e][1] = 4

Multidimensional arrays

In the EnScript language one can create an
array of much more complexity, for example, a two-
dimensional array, which can be graphically illustrated
in the following ways:

o 1 2 3 4 5

o ON =0

A two-dimensional array is created using the control
statement foreach that will be discussed later in this
work. A two-dimensional array size is determined by
the number of rows and columns.

Example:

class MainClass {

/ Creation of array
typedef int[] IntArray;
Creation of array variable

typedef IntArray[] multiArray;

void Main(CaseClass c¢) {
// Determination of array size
multiArray m(2);
/ Creation of three arrays, subsequently in
/ every cell of the array 'multiArray’
Result: creation of two-dimensional array
foreach (IntArray a in m) {
a = new IntArray(2);

}
// Initialization of two-dimensional array
mfe][e] = 1;
mfe][1] = 2;
m[1][e] = 3;
m{1][1] = 4;

int Index = B, secondIndex = 8;
/ Displaying the value fo the array
foreach (IntArray a in m) {

Index = 8;
foreach (int i in a)
Console.WriteLine("\tm[" + Index + "|[" &
+ secondIndex + ' i)
secondIndex++;
b
Index++;

}
}

Processing instructions

In any language there are programming instructions
to control the execution of the program. Instructions
are used when making decisions. The need to
use instructions results from the fact that encoded
algorithms only in simple cases are purely sequential,
executed line by line in the order of their occurrence.
Quite often the next steps of the algorithm are
dependent on the fulfilment of a certain condition or
a few of them.

Conditional if

The statement if allows you to execute the program
code only when a specific condition is fulfilled. The
action of the above instruction boils down to verifying
the condition and if found to be true, the indicated
block of code is performed. Due to some modification
of the instruction /f, it is possible to specify commands
that will be executed if the condition is not fulfilled. The
modified conditional statement is defined as if ... else.
The simplest form of instruction if looks like this:

if (condition) instruction_ 1
[else instruction_2]

Example:

class MainClass {
void Main(CaseClass c) {

Declaration of variable 'a’

int 5 = 2;

Declaration of variable 's’
String s = "Welcome”;

If ' execute instruction
it (a)
Console.WriteLine("The value of ¢

riable 'a' is equal to 2");

If 's' execute instruction
if (s)

Console.WritelLine(s);

if (a == 3) I ‘g = 3
Console.Writeline(s);

else { else
Console.WriteLine("The value of ¢

the variable 'a' is equal to 3"};

ISSUES OF FORENSIC SCIENCE 288(2) 2015

79

FORENSIC PRACTICE

Result:

Result:

The value of the variable 'a
Welcome
The value of the variable

is equal to 2

a' is equal to 3

The statement while

The statement while is a block of instructions that
are executeduntil the control expression (condition)
will return a false value. The syntax of the instruction
is as follows:

while (condition) statement

Example:

class MainClass {
void Main(CaseClass c) {

int i =8y // Declaration of variable 'i'
while (i < 10) { // Condition checking

Console.Write(i + " "); // Instruction

i++;

Result:

91234567889

The statement do... while

The statement do... while is a modification of the
above mentioned loop while. The difference is the time
checking of the condition of the loop — in the loop while
the condition is checked at the beginning, in the loop
do... while — at the end. Loop do... while performs at
least one process. The syntax of the instruction is as
follows:

do (instruction) while (condition);

Example:

class MainClass {
void Main(CaseClass c) {

18987654321

The statement for

The statement for combines three activities: loop
initialization (prior to the first iteration), check the
condition and change the values. The first statement
is the initialization of the variable controlling the loop.
The second statement is a check of the condition. The
third statement is an action; usually an increment (++)
or decrement is placed here (--) of variable controlling
loops. The syntax of the instruction is as follows:

for (initialization; condition; step)
statement;

Example:

class MainClass {
void Main(CaseClass c) {

for (int i = @; i < 10; i++) {

Console.Write(i + Y3 // Instruction

}
}

Result:

©123456789

The statement foreach

Statement foreach allows sequential viewing the
data of different data sets, e.g. arrays, lists. The syntax
of the instruction is as follows:

foreach (name of the type_element name in
collection) statement

Example:
class MainClass {

enum Week { // Enumerated data type

int i = 10; // Declaration of variable Monday = 1;
do { Tuesday,
Wednesday,
Console.Write(i + " "); // Instruction Thursday,
i--; Friday,
Saturday,
} while (i > @); // Condition checking Sunday
} 1
} I
80 ISSUES OF FORENSIC SCIENCE 288(2) 2015

FORENSIC PRACTICE

void Main(CaseClass c) {
foreach (Week d) { // Foreach loop
Console.WriteLine(Week: :SourceText(d) &
+ = "+ d);

Result:

Monday = 1
Tuesday =
Wednesday
Thursday
Friday =
Saturday
Sunday =

2
=3
4

6

N nouvmoa

The statement forall

The statement forall allows sequential viewing of
different data sets, similar to foreach. The difference
between the above instructions occurs during the
processing of the data sets in the form of a tree
structure, which in a programming language EnScript
are objects of NodeClass. The instruction forall
will be presented later in the work while discussing
the differences in the EnScript language defined in
versions 6 and 7 of EnCase. Syntax of the statement
forall is as follows:

forall (name of the type_element name in
collection) statement

Instructions: break, continue

Inside any structure forming a loop, you can control
its course by using break and continue. Using the
statement break allows leaving the loop without
executing the rest of the instructions. While the
statement continue stops the execution of the current
iteration, causing the return to the top of the loop to
begin new iterations.

Example:

class MainClass {
void Main(CaseClass c) {
for (int 1 = 1; i < 11; i++) {
Console.WriteLine(i);
if (1 == 4) {
Console.WriteLine("Stops the current &
iteration and returns to the beginning.");
continue;

}
if (i ==6) {
Console.WriteLine("The loop was &
interrupted and further digits: &
7, 8, 9, 1@ will not be displayed.")};
break;
1
}
}
}

Result:

BwN e

Stops the current iteration and returns to the
beginning.

5

6

The loop was interrupted and further digits: 7,
8, 9, 10 will not be displayed.

The statement switch

The statement switch selects one of the snippets
of code, on the basis of the value of the total
expression. This instruction computes the value of
the specified expression and compares it with the
specified values. This statement evaluates only the
relationship of equality, it is not possible to use any
other relationship. If any checked value is equal to
the value of the expression, the program goes to the
further instructions and executes all to the end of the
block until it encounters a break. If no value is eqgual
to the value of the expression, the instructions are
executed by keyword default. Syntax of the statement
forall is as follows:

switch (expression)

[
case total_value_1: statement; break;
case total value_2: statement; break;
case total_value 3: statement; break;
case total_value_4: instruction; break;
(-)
default: statement;

Example:

class MainClass {
void Main(CaseClass c) {

int number = 4;
switch(number) {

case @: Console.Write("The variable &
'"number' has a value of: e"); break;
case 1: Console.Write("The variable &
‘number' has a value of: 1"); break;
case 2: Console.Write("The variable &
‘number’ has a value of: 2"); break;
case 3: Console.Write("The variable ¢
‘number' has a value of: 3"); break;
case 4: Console.Write("The variable &
"number' has a value of: 4"); break;

ISSUES OF FORENSIC SCIENCE 288(2) 2015

81

FORENSIC PRACTICE

Result:

The variable ‘number' has a value of: 4

Operations on variables

Operations on variables are made using operators.
An operator works on one or more of the arguments,
and the result of its action is a completely new value.
The arguments have a different character than the
usual function call, but in both cases the result is
the same. Operators in the EnScript language can
be divided into two groups, based upon the number
of arguments on which they operate. We distinguish
between unary-with one argument and binary-with two
arguments.

Unary operators

Unary operators in the EnScript programming
language, will be presented in the form of a table.
The rule is that these operators are located before the
expression. The exception is the operators "+" and
"--", which may also occur after the expression.

Table 2 Summary of unary operators

Operator Description
New Creating a new object.
typeof () Specification of the type of object.
f Negates the logic - returns the negated
; logical value of the expression.
o Increment - increases the value of the

variable.

Decrement - lowers the value of the
variable.

Unary minus, changes the sign of the
expression.

Negates the bit - returns the variable with
negated bits.

Binary operators

Binary operators in the EnScript programming
language will be presented in the form of a table. Binary
operators are placed between the expressions. Binary
operators can be divided into operators: arithmetic,
bitwise, logical relationships, assignments and range.

Table 3 Range operators

Table 4 Summary of arithmetic operators

Operator Description
+ Add.
= Subtraction.
* Multiply.
/ Division.

%

The operator of the remainder.

Table 5 Summary of bitwise operat

Operator Description
<< Bit offset to the left.
>> Bit offset to the right.
& Bit product.

A

Bit difference.

Bit sum.

Table 6 Summary of logical operators

Operator Description
&& Logical product.
Il The logical sum.
Table 7 Summary of relational operators
Operator Description
< Means: less than ...
~ Means: more than ...
<= Means: less than or equalto z ...
>= Means: greater than or equalto z ...

Means: equalto z ...

Means: different from ...

Table 8 Summary of assignment operators

Operator Description

Dereferencing, or shelling, to gain access
to a certain value.

Operator Description
= Assigns the variable on the left side the
- value of the expression on right side.
/=
%=
+=
= Are used to reduce the write operation,
you can save by using arithmetic and bit
S5 operators.
>>=
&=

Is used to access static functions.

82

ISSUES OF FORENSIC SCIENCE 288(2) 2015

FORENSIC PRACTICE

Object-oriented programming

Each program (script) of EnCase consists of one
or more classes. In the previous examples, there was
only one class called MainClass.

class MainClass {
void Main(CaseClass c) {

Console.WritelLine("Hello World");

Classes

Classes are descriptions of objects, or programming
unites, that can store data and perform tasks as
instructed by the programmer. Schematic diagram of
a skeleton class is as follows::

class class_name {
//class content.

}

An object that was created on the basis of a class is
called an instance. The object is created by using the
operator new. The class is as a matrix used to create
the object. It instructs the virtual machine how to create
an object of a particular type. Each object created on
the basis of the class can have unique component
values. For example, one can use a class called dog,
to create several different objects, each of which will
be a different breed.

Example:

class MainClass {

void Main(CaseClass c) {
//Creation of new Dog type objects
Dog dog_1 = new Dog();
Dog dog_2 = new Dog();
Dog dog_3 = new Dog();
// Components of objects
// - information on objects
dog_1l.size = 58;
dog_1l.breed = "Husky";
dog_1.name = "Borys";

dog_2.size = 48;
dog_2.breed = "Bokser";
dog_2.name = "Kol

dog_3.size = 30;
dog_3.breed = "B
dog_3.name = "

/ Creation of 'Dog' class
class Dog {
int size;
String breed;
String name;
j,
}

The above example contains three reference
variables with the names: dog 7, dog 2 and dog 3.
Reference variables contain bits representing the way
of arriving at a particular object. One can use the dot
operator (.), along with a reference variable to access
components of the object. Using the dot-operator with
a variable reference, one can imagine as pressing
a button on the remote control steering a specific
object.

Functions

Classes in addition to storing data fields also
contain functions that perform operations written by
the programmer. Functions can modify data and return
different values. A function is called by entering its
name in the program. At the moment the function call
is encountered, the program executes the code of the
function. When the function ends, the program returns
to the place it was called. The syntax of the function
declaration looks as follows:

type name (declaration of arguments)

{

instructions;

}

Example:
class MainClass {

// Declaration of first function without

// any argument

void Display() {
Console.WriteLine("Hello World");

}

// Declaration of second function with

// an argument

void DownloadText(String text) {
Console.WriteLine(text);

b

// Declaration of third function

// with 2 arguments returning

int Sum(int a, int b){
int ¢ = a + b;
return c;

}

void Main(CaseClass c){ //Function 'Main’
'/ Calling all functions subsequently
Display();
DownloadText("The t
int d = Sum(3,7);

Console.WriteLine(d);

}

}

Result:

Hello World
The text passed to the function as an argument
10

ISSUES OF FORENSIC SCIENCE 288(2) 2015

83

FORENSIC PRACTICE

Functions also determine the actions that the object
is able to perform.
Example:

class MainClass {
void Main(CaseClass c) {

// Creation of an object

Dog dog_1 = new Dog();

// Components of objects - information
dog_1.size = 58;

dog_1.breed = "Husky';

dog 1l.name = "8 s";

dog_1.bark();
}

// Creation of 'Dog' class
class Dog {

int size;

String breed;

String name;

// Function - behaviour of object
void bark() {
Console.WriteLine("Woof! Woof!");
}
¥
}

Result:

Woof! Woof!

Static functions

Class member functions can be declared as static.
These functions can be called even if no object class
exists. We refer to the name of the static class through
the name of the class and the operator scope (::). The
keyword static allows calling a function without having
to use an object of that class. Static functions allow
operations that do not depend on components, and
therefore do not require an object.

Example:

class MathClass { // class MathClass
// Definition of static function
static long Power(long x) {
return x * x;
}
}

class MainClass {
void Main(CaseClass c) {
// Calling static function
Console.WriteLine("5 to the power of 2 = " &
+ MathClass: :Power(5));

Wynik:

5 to the power of 2 = 25

Constructor

A constructor is a special function that is performed
when you create the object. A constructor contains
code that is executed when you use the new operator.
In other words, the constructor contains instructions
executed when creating a new object. The function
being a constructor never returns any result and must
have a name in accordance with the name of the class.

class class_name {
class_name(){
// constructor code
3
}

Each created class has a constructor, even if it
is not written by the programmer. In this case, the
constructor is created by the compiler. The basic
feature of the constructor is that it is executed before
the object is associated with the reference. In most
cases, a constructor is used to initialize the state of
the object, in other words, to determine the value of its
components.

Example:

class MainClass {
void Main(CaseClass c) {

// Creation of an object

Dog dog_1 = new Dog();

// Display the features of objects
Console.WriteLine(dog 1.size);
Console.WriteLine(dog_1.breed);
Console.WriteLine(dog_1.name);

b

// Creation of 'Dog' class
class Dog {

int size;

String breed;

String name;

Dog() { // Constructor
// Determination of the value of object
size = 50;
breed = "Husky";
name = "Borys";
}

void bark() {
Console.WriteLine("Woof! Woof!");
}
1
}

Result:

50
Husky
Borys

84

ISSUES OF FORENSIC SCIENCE 288(2) 2015

FORENSIC PRACTICE

Inheritance

Inheritance is one of the foundations of object-
oriented programming. It enables efficient and easy to
use code, written once as well as the building a hierarchy
classes adopting their properties. Inheritance involves
the building of new classes based on existing ones.
Every such new class adopts the behaviour and
properties of the base class. When designing a class
using inheritance, one should put the common code in
the base class, and then inform the specialized class
that the specific shared (more abstract) class is their
base class. When one class inherits from another,
a child class inherits from the base class. Colloquially
it is said that the child class extends the base class.
An inheritance relationship means that the child class
inherits from the base class. In the EnScript language,
inheritance is expressed using a colon (:), and the
whole schematic definition is as follows:

class child _class: base class {
// inner classes

}
| S o —
base class
Doctor
i nt
i e R M oo
!Pmatpaﬁsnr(,l
child classes
Surgeon J FamilyDoctor
- thod B - Add new component
| Addnewnetad | pakomsison || wodstome | Anewooten
| giveAdvice
Fig. 1. Example of inheritance.
Example:

class MainClass {
void Main(CaseClass c) {

// Creation of an object of family doctor
// Attributes
FamilyDoctor doctor = new FamilyDoctor();
doctor.worksAtHome = true;
doctor.worksInHospital = true;
Console.Writeline("Family doctor: ");
Console.WriteLine("Works at home: " + &
doctor.worksAtHome);
Console.WriteLine("Works in hospital: " + &
doctor.worksAtHospital);
Console.WriteLine("The doctor's advice: ");
doctor.giveAdvice();

¥

// Base class 'Doctor’
class Doctor {
bool worksAtHome;
void treatPatient() {
Console.WritelLine("Treats a patient");
}

¥

// Base classes: FamilyDoctor, Surgeon
// which inherit from Doctor class
class FamilyDoctor:Doctor {
bool worksAtHome;
void giveAdvice() {
Console.WriteLine('The patient must &

)
}
}

class Surgeon:Doctor {
void makeIncision() {
Console.WritelLine(Makes a ncision");
}
¥
s

Result:

Family doctor:

Works at home: 1

Works in hospital: 1

The doctor's advice: The patient must take
vitamin C

The graphical user interface (GUI)

By using objects one can create advanced
applications, acting on the basis of the graphical user
interface. While creating a graphical user interface,
remember that it consists precisely of objects: buttons,
labels, text boxes, etc. that have their own components
and functions. In this article only two examples of
a graphical user interface will be presented.

Example:

o

GroupBoxClass Exampliﬂ i

Personal Data
Provide your name:

==X

Cancel }

Fig. 2. Sample dialogue box (object).

The source code that displays the above
window:

class InputDialogClass: DialogClass {
GroupBoxClass Group;
StringEditClass StringEdit;
InputDialogClass(DialogClass parent,String &s):
DialogClass(parent, "GroupBoxClass Example"),
Group(this, "Personal Data", START, START, &
250, 40, @),
StringEdit(this, "Provide your name:", 15,
15, 2ee, 12, @, s, 255, @)

{
¥

ISSUES OF FORENSIC SCIENCE 288(2) 2015

85

FORENSIC PRACTICE

class MainClass {
void Main() {
String s;
InputDialogClass diag(null, s);
diag.Execute();

}
}

The graphical user interface captures events
generated by the user. In the EnCase Forensic v. 6
program, for capturing, for example, a user clicking
a button, the EventClass is responsible, and in version
7, the HandlerClass of the above program is used.

Fig. 4. Message box which appears when you click the
button 'Click’.

The source code for dispiaying the above
window and capturing events:

class ButtonDiagClass: DialogClass {
ButtonClass Button;

ButtonDialClass(DialogClass parent = null):
DialogClass(parent, "Button Demo"),

Button(this, "Click!", START, START, «
75, 3@, @) // Button

{

1

virtual void ChildEvent(const EventClass &
&event) {
// Supports clicking event
DialogClass::ChildEvent(event);
if (Button.Matches(event)) {
// Displays a message
ErrorMessage("You have clicked a button");
}
}
1

class MainClass {
void Main() {
ButtonDiagClass bd();
bd.Execute();

}
}

Linked lists, tree structure

In order to understand how to display and process
data in EnCase, it is helpful to understand the structure
of a tree and the structure of a linked list.

A linked list is a data structure consisting of
elements, designed to connect with each other as
needed. The list items are called nodes. Linked lists
are available in three versions: singly linked list, doubly
linked list and tree.

The tree is the most complex variation of the
combined list and the basic data structure used in
EnCase, used to present data in a data structure
window (A). The tree is a collection of nodes and leaf
nodes, with a highlighted principal node (vertex) called
aroot node and the rest of the nodes (vertices) divided
into subsets, which are the main sub-trees of the tree.
Each sub-tree has its own root, whichin turn has its
own sub-trees, etc., and therefore this node is the root
of a sub-tree. A leaf is a node (element) of tree that
does not have children, for example, a file or an empty
folder. Often the leaves are the nodes farthest from the
root.

D Root ———————Root node
Folder 1
Plik 1 Folder
, sub-tree
Plik 2
—D Faldler? Leaf node

Fig. 5. Tree data structure.

The NodeClass is responsible for presenting data in
EnCase in tree form. Most classes of EnCase inherit
the components and functions of the above mentioned

86

ISSUES OF FORENSIC SCIENCE 288(2) 2015

FORENSIC PRACTICE

class. Selected NodeClass functions, i.e.. Parent(),
FirstChild(), LastChild(), Next(), allow the processing of
data in the form of a tree structure.

Example

class NodeClass {
NodeClass(parent = null); // constructor
NodeClass FirstChild();
NodeClass LastChild();
NodeClass Next();
NodeClass Parent();

EnCase Forensic v. 6i 7 - fundamental differences
in the EnScript language

The EnScript programming language is not compatible,
which means that scripts written in EnCase Forensic
v. 6 will not work with the latest version of the program.
The only solution for EnCase v. 7 users is rewriting
scripts of version 6 in such a way that they operate in
the latest version of the program. Before attempting to
update the scripts you might want to know the basic
differences that occur in the EnScript language as
defined in both versions of EnCase Forensic.

lteration of data

The primary difference in EnScript, as defined in
these versions of EnCase Forensic, is the method
of processing data viewed in the program in the tree
structure. In EnCase v. 6, in order to process the
data, one of two control statements is used: foreach
or forall. The control statement foreach allows you to
gain access to all vertices of the root node, and the
statement forall allows you to gain access to all the
elements of a tree structure.

Vé

class MainClass {
void Main(CaseClass c¢) {
forall (EntryClass entry in c.EntryRoot()) {

Console.WriteLine(entry.Name());

In the case of EnCase Forensic v. 7, in order to
process or display data in a tree structure, use the
object type ltemlteratorClass..

V7

class MainClass {
void Main(CaseClass c¢) {

ItemIteratorClass iter
(c, ItemIteratorClass:
ItemIteratorClass:
ItemIteratorClass:

:NORECURSE |
:NOPROXY,
tALL);

while (EntryClass entry = iter.GetNextEntry())
{

}

Console.WriteLine(entry.Name());

Device-gaining access

Another difference is the way to gain access to the
device added to the case. In EnCase Forensic v.6,
direct access to the device can be made using an
object of DeviceClass.

V6

class MainClass {
void Main(CaseClass c) {

foreach (DeviceClass dev in c.DeviceRoot())

{

Console.WriteLine(dev.Name());

}

In EnCase Forensic v.7, the object EvidenceClass
is contained between objects of DeviceClass and
CaseClass. Examples:

v7

class MainClass {
void Main(CaseClass c) {

foreach (EvidenceClass ev in c.EvidenceRoot())
{
EvidenceOpenClass evOpen();
if (DeviceClass dev = e.GetDevice &
(c, evOpen)) {
Console.WriteLine(dev.Name());

}

lterating through the contents of the device

V6

class MainClass {
void Main(CaseClass c) {

foreach (DeviceClass dev in c.DeviceRoot()) {
foreach (EntryClass entry in &
dev.GetRootEntry()) {
Console.WritelLine(dev.Name());
b
}

ISSUES OF FORENSIC SCIENCE 288(2) 2015

87

FORENSIC PRACTICE

V7

class MainClass {
void Main(CaseClass c) {

foreach (EvidenceClass ev in c.EvidenceRoot())

{

EvidenceOpenClass evOpen();
if (DeviceClass dev = e.GetDevice
(c, evOpen)) {
Console.WritelLine(dev.Name());
ItemIteratorClass iter(dev);
while (EntryClass entry =
iter.GetNextEntry()) {
Console.WritelLine(entry.Name());

Gaining access to a file

EnCase scripts allow access to a file selected by the
user. In EnCase v. 6 this functionality was limited solely
to items presented by objects of type EntryClass,
visible in the window Entries.

V6

class MainClass {
void Main(CaseClass c¢) {

long offset = @;
long size = 20;

if (EntryClass entry = c.GetEntry(offset,size){
Console.WriteLine(entry.Name());

¥

In version 7, functionality was largely expanded and
it is possible to gain access to the selected object type
EntryClass, BookmarkClass, RecordClass and so on.

V7

class MainClass {
void Main(CaseClass c) {

long offset = @;
long size = 20;
if (EntryClass entry = c.GetEntry::TypeCast &
(c.GetCurrentItem(offset,size))) {
Console.WriteLine(entry.Name());

}
}

Bookmarks - creating folders
The manner of creating folders in EnCase was
slightly changed. In version 6, one should use the

object class BookmarkFolderClass, and in version 7 —
the object class BookmarkClass.

V6

class MainClass {
void Main(CaseClass c) {

BookmarkFolderClass folder(c.BookmarkRoot(), <«
Test”);

V7

class MainClass {
void Main(CaseClass c) {

BookmarkClass folder(c.BookmarkRoot(), &
‘Test", NodeClass::FOLDER);

Bookmarks-creating notes

Vé

class MainClass {
void Main(CaseClass c) {

BookmarkFolderClass folder(c.BookmarkRoot(), &
"Test");
folder.AddNote("Note", @, 16, &
BookmarkClass: : SHOWREPORT) ;

V7

class MainClass {
void Main(CaseClass c) {

BookmarkClass booknote = c.BookmarkRoot();
BookmarkClass note(bocknote, "Note");

note.SetComment("Content of note");

}

}

EnScript API

EnCase is distributed along with a rich

documentation in the form of an HTMLfile known
as APl (Application Programming Interface). This
documentation is the best source to get detailed
information about the classes, their components and
functions. APl documentation also contains sample
programs (scripts) that are very helpful when creating
your own applications. The contents of the EnCase
Forensic API can viewed by using the following menu:
Help -> EnScript Help.

88

ISSUES OF FORENSIC SCIENCE 288(2) 2015

FORENSIC PRACTICE

{7 @ i0PorClass
@ IPClass

| @ LivelinkStoreClass
@ LocalFileClass

@ LocaiMachine

| @ LogicalEvidenceFileClass
@ LogRecordClass
@ long

@ LongEditClass

@ MainWindow

@ MemanyClass

@ MemonFileClass

| @ MenuBuildClass

{ @ ManuClass

| @ MissingSectorClass
@ NameEditClass

@ NamelistClass

| @ NsmeValueClass

i @ NemeVariantClass

| @ NetntedaceClass
@ NetUserClass

Strona gléwna

Drukuyj

Opcje

[Ins

[

NodeClass is a generic tree data structure.

[“FOLDER

| [“SELECTED

Name
|| [“INsERTLAST
INSERTFIRST
SERTSORTED

INSERTAFTER

. Name

ions] [I"-\;giui?f]_ [‘

NodeClass Enumeration NodeOptions [1.]

Value
1 Node options
" FOLDER - node is a folder
SRS DR | ... SELECTED - node is sclected
16) INREPORT - node is in report view

Descriptio

(5

NodeClass Enumeration InsertOptions [1.]

Value Description

Tells the Insert method where to insert the given node
~ INSERTLAST - msert the node at the end of the list
-INSERTFIRST - insert the node at the beginning on the list
. INSERTSORTED - insert in a sorted order
INSERTAFTER - insert after given node

| @ NetworkCless
o pleense INSERTBEFORE

@ NotesStoreClass
2 null

@ Nhisriinse Ll

INSERTBEFORE - insert before given node

Fig. 6. Enscript APl Documentation.

Examples of copyright software solutions

ProgramMAC Address from LNK

The script MAC Address from LNK is intended to
read the MAC addresses of network adapters, saved
in files with the extension LNK, otherwise known as
short-cuts, created on your hard disk with the file NTFS
system. Each time a short-cut is created by a user
to a file or program on the disk using the NTFS file
system, this results in saving the MAC address of the
network adapter being installed on your computer in
the created file. The script takes into account only the
files with the extension LNK, which were not copied or
transferred from other data carrier or partition.

The script turned out to be crucial in the case aiming
at, among others, reading the MAC address of the
network adapter. The evidence in the above matter
consisted of a notebook and a hard drive sent loose.
As a result of action of the above mentioned evidential
script of hard drive (sent loose) 2 MAC addresses of
network adapters were read out.

The MAC Address from LNK script is based on
data contained in the document "The Meaning of Link
files in Forensic Examination™ by Harry Parsonage.
The document contains a detailed description of the
analysis of the contents of LNK files in a hexadecimal
editor, used in the process of creating the script.

When running the script in EnCase Forensic v. 6,
a dialogue box displays to specify the path and file
name in which the results are saved in the script.

In the upper-left corner of the window the button
"Help" appears. When you click the above button,
a window displays containing a brief description of the
script.

2 http://computerforensics.parsonage.co.uk/downloads/
TheMeaningofLIFE.pdf

Unique MAC addresses and the ID of the hard
disk read from LNK files, are displayed in the console
window of EnCase Forensic v. 6.

The Meaning
of

Linkﬁles In

Fm'ensic

Examilmlinns

Fig. 7. Document "The Meaning of Linkfiles in Forensic
Examinations".

MAC Address from LNK || Pawet Olber ﬁ

Output Path

Log File Path:
C:\Users\User\Desktop\Wyniki.csv

=

[Cancel]

Fig. 8. MAC Address script dialogue window from LNK.

ISSUES OF FORENSIC SCIENCE 288(2) 2015

89

FORENSIC PRACTICE

MAC Address from LNK

This script reads MAC address from LNK files.

Program takes into consideration cnly LNK files, which weren't copied
or moved by user from/to another logical disk.

That guarantees that readed MAC address concerns network cards
installed in evidence computer.

Search results will be displayed in Console view.

All getails {for exampile: file name, last written date, volume Object_ID ...}
will be saved in CSV file.
Source document: The Meaning of Linkfiles In Forensic Examinations.

| This program has been written by Pawet Olber
Forensic Laboratory of Regionai Police Headquarters in Olsztyn

Fig. 9. Help window in script MAC Address from LNK.

Detailed data which are obtained, are saved in the
script as a text file CSV. The resulting text file with the
extension CSV contains, inter alia, a list of files with
recovered MAC addresses along with detailed data.

The Redundant Remover Script

The Redundant Remover Script was made in the
course of forensic research within the forensic evidence
concerning the Atmel 45DB321D skimmer. In the
course of the implementation of the aforementioned
research, the contents of the device were read, which
had been saved in the form of a binary file containing
a sound signal record

The read-out record of an audio signal contained
redundant data, preventing the correct analysis of the
amplitude of the signal and reading the copied identity
data of credit cards.

In order to remove redundant data from the sound
file, the contents of the evidential binary file were

MAC Address used in the CbjectID

Logical disk C - CbjectID: 60 63 DF 71 DC 05 61

) 30 42
F3 40

ZIReport EConsoiei i@ Detailz ¥ Output [Lock [] Codepage o7 134018/134018

readed from LNK files lccated on disk C:

address of the primary network card.

42 92

Lz

Fig. 10. Console window-information of the script the MAC Address from LNK.

Name File Ext Mac Address Volume Object_ID Is Deleted
1956 Mercedes-Benz 3005L Gullwing Coupe_3JPG.Ink ink 000C233D3048 B0E3DF7iDCOS614292A4582B8D67F179 No
1556 Mercedes-Benz 3005L Gullwing Coupe £ LNK LNK 0OOC29303C48 6C63DF71DC05614252A458288D67F179 |No
1856 Mercedes-Benz 3005L Guilwing Coupe_4.ink Ink 0C0C 29303048 6063DF710C05614292A458288D67F178 Nc
1957 Chevrolet Corvette Convertible _1.Ink Ink £00C 29303048 6063 DF7IDCO5614292A4582B8D67FL79 -|No
44.1pg.ink ink £00C293D3048 ECE3DF710C0O5614292A4582B88D67F179 No
Adv Searching KWL Ink ink 000C293D3048 6063 DF710C05614292 A4SB2BBD67F1 78 No
classic cars.ink ink 000C 23303048 6063 DF71DC0O5614292 A4SB28BDE7 F179 No
classic cars LNK LNK C00C293D3048 6063 DF71DC05614252A4582B8D 67 F179 No
classic cars.ink ink 000C293D3048 6063 DF710C0561 4292 A4582B8D 67 F179 No
Desktop.ink Ink 00 0C 29 6AFB 40 6063 DF710C05614282A458288D67F179 Nog
Deskiop.Ink ink C0CC293D3048 6063 0F710C0561 4292 A4582B8D 67 F179 No
Desktop.ink ink 000C29303048 6063 DF710C056142582 A458 2880677179 No
Desktop.ink ink 0COC293D3048 6063DF71DC0O5614292A456288D67F178 Mo

Fig. 11. Data read using the MAC Address from LNK script.

I3 Amves 45083210 DR ——
Mi EdyGe Widok Trensoori Sciezki Genery Efekty Ana

B35

Fig. 12. Amplitude of the audio signal containing redundant data.

20

ISSUES OF FORENSIC SCIENCE 288(2) 2015

FORENSIC PRACTICE

] Transcript E5 Picture [=|Report 121 Console &
booD0o07F 7 7F 7F JF 7F 7F 1F IF 7E IF 7 7F 7E 1F 7 7E E 7F 7F OO OO O O~ C~000 &
boooosz r 7F 7F 7F 7 7 7F 7F 7F 7F 7F 7F 7F 7F 7F 7F 1F 1F 7F 7F TIsEsssEasEIssIEEBTEA
Poo00E4TE 7F F 7F 7F 7F 7F 7F 7F 7F 7E 7F 7F 7F 7F 7F 7F 7F 7F 7F 7F 7F 7F
boooDe67E 7E 7 7F 7F 7F 7F 7F 7F 7F 7F 7F 7F 7F 7F 7F 7 7F 7F 7F 7F 7F 7F 7F 7F 7F |0000000000000000000000000000
boo01287F 7f 7F 7F 7F 7F 5D 55 54 56 59 5D €1 €7 6C 71 75 79 7B 7D 7F 81 £3 87 8D 94 9D A6 |JOOOOOOOD)UTIVY]aglquy{}Difs|”|
PO0O160RD A8 A3 9D 97 81 SC 88 €3 82 80 7E 7TA 75 6D 62 55 4C 4A 4C 5C 63 6A 70 75 78 7A —'E" f, E~zumbULJLEV\cipuxz
pooo1s27c 26 3D %6 Al AC B2 Bl AD A6 SF S8 53 SE 83 28 B6 84 852 B JF 7E 7D 7D 7C 7B 7B ¥=3c-t., |EET~}} L
Po002247A 78 72 72 7E 78 78 78 72 78 78 T2 78 T TE I8 T2 TE VL TE T2 TE 7T 7T TE TS 75 T4 T3 zzumRRRKXRXAXKAXKAXXAXXRXWCWTELTS
pooo2s€72 7 6F 6E 6E 6E 6E 6E 6E 6F 70 71 73 74 7€ 7¢ 7R 73 7D 7E 7F 81 82 €5 87 85 2E 92 99 A3
PC00288AD B4 B7 54 AE R6 SD 95 SF 89 26 82 TF 7C 75 64 4A 38 35 3E 4D 66 €F 77 7C 7F 24 32 AE BF CE -7 -'®
p000320C2 33 SE E8A 7TE 6% S1 4E SB 6D 7E 90 Bl B4 AS 2E TE €7 4C 4E S 85 A6 B7 32 AS 96 £C 86 81 7E A*S~iQN
P0O0035277 63 42 31 39 ¢D 63 7TA £9¢ A8 AF A2 SE 7F €A 48 41 4C SA 65 70 7D 81 8% 9D BS C6 C1 AF 9A E7 [wcBiSMczh™
P0o003847C €€ 53 56 €3 TS B1 99 B0 B2 A5 93 85 78 61 50 54 61 71 TE 88 AE RO 92 84 7C 6A 57 54 &C
p00041679 83 95 AB AE 2 5B 86 52 B0 7D 7% 71 63 32 44 42 4R 54 65 €F 75 78 7C 7F 82 SC BA |yFE®! >'<1,€)yqeRDBIT
po004483s 33 a8 8B &C 2 5D 5D €7 7D 86 3C AR A9 Al 98 S0 g8 82 80 7D 78 €D 5D 4B 42 4E [p*">E1zh))geltes®
[00048059 62 68 73 78 TC 8C 8C AD B6 AC 9F 31 7D 71 62 5D 6D 79 50 58 §9 3D 97 8D 7D
booosi2ioo 00 60 60 00 00 0D 00 S5E 32 02 00 03 0z 62 65 70 7D A7 A3 &F 88 82 7F 71
hoC054464 4% 47 4E 59 64 6F 77 7C S1 BE 99 AF BA B§ S8 20 £9 =3 73 61 40 47 S5 62 77 I
po0OS767D 28 A2 32 3D AF 98 27 7C €€ 5B 62 73 20 26 A3 93 82 76 64 76 9F B0 AR 9D 8g flbe€-"£", v]Xdv
PO0060BSZ 7E 78 6A 55 43 43 50 62 76 82 9% A4 9B BC 80 71 SD 5C 69 79 o 60 51 5D , BHyEEQ] \1iy., »uE5€u"QT]
POODE40EE 6F ® 7D B0 84 BE Al B7 C2 CO BS AE 9D 92 SA 87 81 TE 79 6E 60 &D 7A s ;AR 184~
POOO672A2 A¢ 9C 90 26 7F 76 66 SE 5D 63 62 71 7B 7F 86 94 9F A2 9D 95 8D 26 7 55 5D 62 E el
b00070472 76 79 78 7D 7F &1 83 86 8D 95 9E A7 AA A6 AD 99 84 SE 28 82 7E 7B 6C 64 61 €3 69 6F 74 D |*2§
ODC736E1 88 ©3 SB SF SE 9B 97 93 SF 8C B8 88 23 81 80 7E 7C 7A 77 73 70 €D &2 €4 SF 3A 5€ 55 57 £ | @**f|€~|zwepmhd ZVOWZ~
p0DD76864 69 6E 73 76 79 7B 7D JF 80 B2 85 &7 8E 92 98 SE A4 AR A A€ A2 3D 37 91 8D £3 23 83 82 T (€0
b000EGOTD 78 78 75 70 6B SD 57 54 55 59 SE 64 6A 6F 73 76 70 7B 7D 7E B0 S1 B3 E6 E3 2F 96 9D A3 A6
bo00832A5 A2 °C 95 BF 82 80 7C 75 65 64 61 62 66 €C 72 78 7D BL 87 93 9C AO A0 3C 97 91 BC BE EBE 83
booo8E4E2 80 7F 7D 7B 72 71 6B 64 5C 55 52 53 57 5D 64 68 7O 74 77 TA 7C JE 7F 81 83 E6 £B 91 99 A2
p000E96AS A AS SF 98 32 87 82 7F 7A 71 €6 5F S5E 62 62 6F 75 7B 80 88 28 A4 A6 A3 9C 95 EF 8B 87 84
booos28g82 &1 7F 7D 78 77 6D €5 5C 54 4F 50 55 5C 63 6A 70 T4 77 JA 7C 7D JF 81 84 SB 92 9C AE AF AF
bO0DIE0AS AD 62 63 73 7B 82 8D A2 AC AB A¢ 9C 95 SE 88 84 81 TE 7B 76 6F 65 56 @ —E.~ug”"bks{
p00099247 3F 7D BO B4 BE 98 AE B2 CO BC BO A3 S8 90 SA 87 82 TE TD 77 6D SB 46 |G?AJU hovzi€.®
D0010243C 3D 82 8B S8 AC BF €500 00 00 00 0 00 00 00 SE 32 02 00 01 01 01 i<=CGT_iqw|D,c5¢ z---
p001056BD A7 92 9D AB A2 B0 81 73 56 52 5T 6F 7C &7 A4 Bl AB SE 92 BA £4 20 7D 76 s§'€1QTCVS|«c||SVR of #Hz«’ 5.Ei7
p0O0108E6S 48 34 83 BF AR C3 C6 B4 A3 8B 7B 5C 4B 56 6A 7D EF BO AD 94 826 77 | hez~F | *AE E¢ {\KVi} | "-StwQE
poo1120s5s 71 &3 7B 6F 5¢ 32 2D 43 5F 75 93 B4 AD 94 50 63 46 53 6C 81 AS BE A5 8B [Yqfen®Z|7|{0T2-C_{“ «"€CFS1|¥, ¥«
banssemnan an 2r 2n e -

Fig. 13. Contents of the evidential binary file - in hexadecimal notation.

[F7te% qeiecteq (io® veX: SUsedeE - S€SeICy -
[psyereq pAces: 0000000000000060002E383400070TAT I

BO3TIYON T68geg T¢ PALEIT IE54E3T
|sicea geveres TIow peX: TeS4STE - 3€E483%
CETRENE RACER: 000000C00ZEIBII000T

EOBTLICT FLLST 16906 Te pAIear Sefdngd
Zhees qETECET oW PeX: IeS43EE - IEFd204 I
DETeseq PASS3: 0000000D0DC0D00000RE3RSA000TOTOT

SIfSr IS9geq T¢ PALS3T SeF2LLe
L& JTOW peXT 3eE3ie0 - 3e334ie
DeTeLeq pPALes: Q000090000000000002E3B3I000T0T07

BCITCTCN SICSX TEUGEY Te PACSI! IeEIT4E
ERE] 606G LIOW PEX: Ie2233T - I€IITHE
DeTECST PASEIT (000000000000000002EREIL000T0TOT

[ECRTOTOU 906X IS996Y T PALERD SEEILITO
27083 QETELET IIOW PEX! SEESL04 - SeEis0 1
[DETEL8q PACES: DOODOO00OI00200000RETRSLO0ETOTET |

LOSTLTOU SICED IS9GSY T¢ pALSs: TesITat i
127063 geTESEq TIOW FEX: Iesy = 3es8375s
£8q phoes: D0O00C00000C000000REIRII0OCTOTOT

1““4‘2_ :"2 phrsa: sesreed o = S . . - b
| Flieg fiHex “Fpec I Ltevecubs [T Liars junbw!'.jcnmi 2 ¢ wonbar T roce [coqsbeds & ey

Fig. 14. Console window - information about deleted redundant data.

Fig. 15. Amplitude of the audio signal without redundant data.

ISSUES OF FORENSIC SCIENCE 288(2) 2015 91

FORENSIC PRACTICE

read using EnCase v. 6. The contents of the file was
analysed in the hexadecimal editor of the program.
It was found that the redundant data were cyclically
stored in the form of typical 16 bytes.

Using the script Redundant Remover the redundant
data was removed from the evidential binary file.

The contents of the file is loaded again using
Audacity 2.0 program and analysis was performed of
the sound wave by assigning to each amplitude binary
value which was then converted to decimal values.

As a result of activities carried out in the memory
skimmer, intended for reading data from the magnetic
strips of credit cards, records containing credit card
numbers were detected.

Summary

The purpose of this publication was to provide an
overview the programming language of EnScript,
defined in EnCase Forensic program as well as
presenting opportunities for its use in forensic research
on digital data carriers. The information collected in
the course of the study allowed presenting the syntax
of the above mentioned programming language in
a systematized way. In addition, these syntax elements
were backed up with examples. In order to provide
a practical way to use scripts in forensic studies of
digital data carriers, two scripts were presented,
created for the purpose of forensic implementation.

To sum up, it can be concluded that the research
taken at work do not cover overall issues related to the
EnScript programming language. In view of the difficult
nature of the subject, it would be necessary to conduct
further studies to create a few applications in EnScript,
which can be used, inter alia, in forensic research on
digital data carriers. The source code of the created
application and detailed descriptions of their creation
would be an excellent source of knowledge for those
involved in information technology research.

Bibliography

Literary studies
Publisher, year and place of issue
1. Bruce E.: "Thinking in C++. Polish edition",
Helion 2002.
2. Bruce E.: "Thinking in Java. Polish edition",
Helion 2006.
3. Herbert S.: "Java. Programmer's reference",
Helion 2012.
4. Stasiewicz A.: "C++ practical exercises”, Helion
2011.
Il Instructions:
1. EnCase Forensic Version 6.11 user's Guide
2. Enscript Programs Version 6.3 User Manual
3. EnCase Version 7.05 user's Guide
4. Encase EnScript Language Reference
lll. Other sources
1. Enscript API
2. http://www.forensickb.com/2007/09/enscript-
tutorial-part-i.htmi
http://codeslack.blogspot.com
http://www.geoffblack.com/forensics/
5. http://www.slideshare.net/markmorgan47/
enscript-workshop
6. http://encase-forensic-blog.guidancesoftware.
com/2014/04/enscript-changes-from-encase-
version-6.html

3.
4.

Source

Figs. 1-14: author
Tables 1-8: author

Translation Ronald Scott Henderson

92

ISSUES OF FORENSIC SCIENCE 288(2) 2015

