Anna Brągoszewska, M.Sc. Michał Boroń, M.Sc. Central Forensic Laboratory of the Police

Internal validation of LRmix Studio biostatistical software

Summary

The source of DNA in a stain is never known with full certainty despite the fact that the evidential profile may match a DNA profile of a given person from the population. The statistical methods, including the likelihood ratio (LR) allow estimating the evidential power of the obtained result and assessing the ratio of the odds between competing hypotheses as to the origin of a DNA profile or mixture. Therefore using analyses based on probabilistic methods seems to be logically justified and allows reducing the subjectivism of interpretation of results. Thorough knowledge and understanding of the principles of operation and limitations of the tools used for statistical interpretation of the results of biological traces analyses in forensics is the key stage that precedes the formulation of conclusions. The process of checking the efficiency of *LRmix Studio* software as well as reliability and repeatability of results involved single profiles and mixtures from two and three persons. 1971 comparisons with referential profiles were performed. The correctness of generated conditional probabilities was determined and the limits, i.e. *drop-outs* number in the evidential profile whose exceeding might bring about false LR values were identified.

Key words: DNA mixtures, likelihood ratio, LRmix Studio, validation, forensic DNA analysis

Introduction

The analysis of crime scene stains containing DNA from two or three persons is one of the most difficult challenges faced by forensic DNA experts. Such traces require specialist knowledge, superb examination practice and maintaining particular caution when formulating conclusions. It is forensic expert's duty to estimate the value of evidence achieved by scientific examination and presenting the result in a manner that is logical and clear for the judicial authority but, first of all, compliant with the standards accepted in the forensic genetics community. In the light of fast development of biostatistical methods and tools, DNA Commission of International Society for Forensic Genetics (ISFG) argues that the appropriate method for assessing the value of evidence from DNA analysis is the probabilistic method based on likelihood ratio (LR) (Gill et al., 2012), particularly in cases of analyses of mixtures of DNA from two and more persons, especially when the quantity of template DNA originating from the donors is low (Coble i in., 2016).

The analysis performed by means of probabilistic models based on estimating the likelihood ratio value involves assessment of the determination from the genetic examinations in relation to alternative hypotheses (H_p – prosecutor's hypothesis and H_d – defence attorney's hypothesis) regarding the origin of

DNA in the crime scene stain, formulated based on known circumstances of the crime or put forward by the judicial authority. The likelihood ratio measures the supporting power provided by the analytical findings in order to differentiate between competing forensic hypotheses of interest. It constitutes a scientifically accepted and logically justified method of presenting conclusions from DNA analyses (Haned et al., 2015). Upon formulating the hypotheses mathematical analysis is still quite complex and it can be performed only with use of specialist software (Coble et al., 2016).

LRmix Studio is an expert system designed for statistical evaluation of DNA profiles facilitating determination of evidential value of any DNA profile, in particular high order DNA mixtures (Haned, Jong, 2016). The statistical model adopted in LRmix Studio takes into account allele labelling and the number of DNA mixture components. It is referred to as the qualitative continuous model (ENFSI, 2015). The software facilitates calculating likelihood ratios for DNA profiles and mixtures with many components and replications, and accounts for stochastic effects related to PCR, such as drop-out and drop-in (Haned, Gill, 2011). In this article we describe research aiming at internal validation of LRmix Studio software performed according to the recommendation of ISFG DNA Commission (Coble et al., 2016) and ENFSI

Table 1. Simulated DNA mixtures with respective DNA contents.

For example, sample no. 0.5 contains three components, A, B and C. The *Drop-out* column comprises the number of alleles from respective components of mixture, which are not present in the sample (that is, their peak heights are below the detection threshold amounting to 50 RFU), for example, sample 1.1 has a combination of referential alleles (D, E, F) with *drop-out* cases (0, 3, 2). Column "Above ST" refers to components of simulated DNA mixtures, for which all the alleles heights were above the stochastic threshold (here: above 200 RFU). The values in brackets in "Samples" column refer to the numbers of repeats.

Samples	Components of DNA mixtures	Degradation	DNA (pg)	Drop-out	Above ST
0.1 (3)	(A, B)	No	(150, 30)	0, 3/0, 10/0, 6	no
0.2 (3)	(A, B)		(300, 30)	0, 4/0, 15/0, 8	A
0.3 (3)	(A, B)		(30, 150)	5, 0/4, 0/6, 0	no
0.4 (3)	(A, B)		(30, 300)	5, 0/7, 0/14, 0	B
0.5 (3)	(A, B, C)	No	(150, 6, 30)	0, 19, 13 / 2, 27, 22 / 0, 26, 11	no
0.6 (3)	(A, B, C)		(150, 30, 30)	0, 4, 8 / 0, 7, 8 / 0, 5, 12	no
0.7 (3)	(A, B, C)		(300, 6, 30)	0, 22, 11 / 0, 23,11 / 0, 23, 14	A
0.8 (3)	(A, B, C)		(300, 30, 30)	0, 7, 13 / 0, 7, 14 / 0, 8, 13	A
0.9	(M, N, O)		(500, 250, 250)	0, 0, 4	M
0.10	(S, P, R)		(500, 250, 50)	0, 0, 8	S
0.11 0.12 0.12_II 0.14 0.14_II 0.15 0.15_II	(A, B) (C, D) (C, D) (G, H) (G, H) (I, J)	Yes	(100, 40) (100, 40) (100, 40) (100, 40) (100, 40) (100, 40) (100, 40)	6, 16 5, 15 2, 10 4, 27 1, 10 9, 29 0, 11	no no no no no no
0.16	(A, B)	Yes	(250, 40)	8, 27	no
0.17	(C, D)		(250, 40)	2, 21	no
0.17_II	(C, D)		(250, 40)	0, 12	C
0.19	(G, H)		(250, 40)	0, 13	G
0.20	(I, J)		(250, 40)	0, 15	no
0.22	(C, D)	Yes	(40, 100)	16, 5	no
0.22_II	(C, D)		(40, 100)	26, 2	no
0.24	(G, H)		(40, 100)	10, 6	no
0.25	(I, J)		(40, 100)	15, 0	no
0.27	(C, D)	Yes	(40, 300)	18, 0	no
0.28	(E, F)		(40, 300)	21, 8	no
0.28_II	(E, F)		(40, 300)	21, 8	no
0.30	(I, J)		(40, 300)	17, 0	no
1.1 2.1 3.1 4.1 5.1 6.1 7.1	(D, E, F) (G, H, I) (J, K, L) (M, N, O) (S, P, R) (W, T, U) (X, Y, Z)	No	(100, 40, 40) (100, 40, 40) (100, 40, 40) (100, 40, 40) (100, 40, 40) (100, 40, 40) (100, 40, 40)	0, 3, 2 0, 4, 0 0, 3, 6 1, 6, 11 2, 2, 4 1, 7, 0 1, 4, 1	no no no no no no

Tab. 1. Continue.

Samples	Components of DNA mixtures	Degradation	DNA (pg)	Drop-out	Above ST
1.2	(D, E, F)		(250, 40, 40)	1, 14, 9	no
2.2	(G, H, I)		(250, 40, 40)	0, 2, 5	G
3.2	(J, K, L)		(250, 40, 40)	0, 7, 6	no
4.2	(M, N, O)	No	(250, 40, 40)	0, 0, 7	M
5.2	(S, P, R)		(250, 40, 40)	0, 2, 5	S
6.2	(W, T, U)		(250, 40, 40)	0, 9, 3	no
7.2	(X, Y, Z)		(250, 40, 40)	0, 3, 5	X
1.3	(D, E, F)		(250, 250, 40)	0, 0, 7	D
2.3	(G, H, I)		(250, 250, 40)	0, 0, 7	G
3.3	(J, K, L)		(250, 250, 40)	0, 0, 11	J
4.3	(M, N,O)	No	(250, 250, 40)	0, 0, 10	no
5.3	(S, P, R)		(250, 250, 40)	0, 0, 11	S
6.3	(W, T, U)		(250, 250, 40)	2, 0, 6	no
7.3	(X, Y, Z)		(250, 250, 40)	0, 0, 9	no
1.4	(D, E, F)		(500, 40, 40)	0, 7, 4	D
2.4	(G, H, I)		(500, 40, 40)	0, 3, 10	G
3.4	(J, K, L)		(500, 40, 40)	0, 7, 9	no
4.4	(M, N, O)	No	(500, 40, 40)	0, 1, 9	M
5.4	(S, P, R)		(500, 40, 40)	0, 6, 5	S
6.4	(W, T, U)		(500, 40, 40)	0, 6, 2	W
7.4	(X, Y, Z)		(500, 40, 40)	0, 4, 7	X
1.5	(D, E, F)		(500, 250, 40)	0, 0, 7	D
2.5	(G, H, I)		(500, 250, 40)	0, 0, 8	G
3.5	(J, K, L)		(500, 250, 40)	0, 0, 4	J
4.5	(M, N, O)	No	(500, 250, 40)	0, 0, 3	M, N
5.5	(S, P, R)		(500, 250, 40)	0, 0, 4	S
6.5	(W, T, U)		(500, 250, 40)	0, 0, 2	W
7.5	(X, Y, Z)		(500, 250, 40)	0, 0, 5	X

(ENFSI, 2015). In designing the validation experiments examples presented by Øyvind Bleka were use as the base (Bleka et al., 2016).

Materials STR profiling

DNA profiles were generated using the PowerPlex Fusion 6C reagent kit (Promega) and the GeneAmp PCR System 9700 thermocycler (Applied Biosystems). The number of amplification cycles was 29. The products of the PCR reaction underwent capillary electrophoresis using ABI PRISM® 3130xl genetic analyzer (Applied Biosystems). The analysis of results was performed by means of GeneMapper ID-X 1.4 software (Applied Biosystems) with use of an analytical threshold at the level of 50 RFU and a Stochastic Threshold (ST) at the level of 200 RFU.

DNA profiles - pool of DNA samples

The research sample consisted of 27 single source DNA profiles, 32 two-donor mixtures and 48 threedonor mixtures, generated by combining referential samples (of known DNA profiles) of 24 non-related persons from Polish population (Table 1). Additionally, the data used for internal validation included results of DNA profiling from a series of dilutions (1-0,03 ng) of the referential sample amplified in two repetitions. The biological material consisted of blood samples collected within the implementation of NEXT (DOB-BIO7/17/2015) Project. The study was approved by the Bioethics Commission of Cracow Jagiellonian University (KBET/122/6120/11/2016). The mixtures were prepared by combining two and three components in various proportions, using material of a high content of template DNA (500 pg, 300 pg, 250 pg per component) and one or two components of low content of template DNA (100 pg, 40 pg, 30 pg, 6 pg per component). Samples with numbers from 0.1 to 0.8 were amplified in three repetitions, i.e. three separate amplifications of the same DNA extract were performed. Samples with numbers from 0.11 to 0.30 additionally underwent degradation process by seven-hour exposition to sunlight (Yoon et al., 200). DNA profiling results were exported from GeneMapper ID-X and imported to *LRmix Studio* version 2.1.3.

The phenomenon of allelic *drop-out* was observed in all the analysed DNA mixtures. The number of dropped-out alleles was determined by counting those alleles, whose corresponding alleles in the referential profiles in the simulated mixtures had the peak height below 50 RFU (homozygotes were counted twice).

Methods

Likelihood ratio (LR) formula

In order to estimate the power of evidential value in order to determine whether DNA of the person of interest (POI) is a component of *E* sample the following *likelihood ratio* (LR) formula of was applied:

(1)
$$LR = \frac{P(E|Hp)}{P(E|Hd)}$$
, where

 H_p : DNA in the sample comes from the person of interest (POI),

 $\rm H_{\rm g}$: DNA in the sample comes from another unknown person unrelated with POI

In the assessment of stochastic effects the *drop-out/drop-in* model implemented in *LRmix* software (Haned et al., 2015). In addition to formulating the above-mentioned hypotheses, which will be assessed by means of likelihood ratios, the said model requires determining additional input parameters:

- Frequency of occurrence of alleles in the target population used for calculating the probabilities of genotypes in profiles of unknown persons,
- F_{st} correction used for adjusting uncertainty as regards allele frequency according to the structure of the subpopulation,
- drop-out probability, that translates to the probability that all the alleles of a hypothetical donor within the given hypothesis have dropped out,
- drop-in probability, i.e. the probability that an allele/alleles whose presence is not explained by hypothetical donors within a given hypothesis will be a false allele/alleles (not originating from any of the donors) (Haned et al., 2012).

During the calculations $F_{\rm st}$ correction was set at the level of 0.01while the probability of drop-in was set at the level of 0.05. That value corresponds with expected occurrence of one allele resulting from drop-in phenomenon in 20 loci, which may overlap with the alleles originating from the actual components of the

DNA mixture (Haned et al., 2012). Allele frequencies used in the calculations were elaborated by the European Network of Forensic Science Institutes (ENFSI) for the European population (Welch et al., 2012). As regards five markers, for which allele frequencies are not given in the ENFSI population database, data elaborated by the supplier of PowerPlex Fusion 6C kit (Promega) (Steffen et al., 2017).

The probability of *drop-out* in every DNA mixture was estimated by Monte Carlo simulation implemented in *LRmix Studio* software, with use of 1000 simulations performed within every hypothesis. According to the methodology described in paper by Haned et al. (2015), it was assumed that the estimated value of *drop-out* probability is the same for all the components of DNA mixture with an exception of a situation where one component of the mixture can be considered as "known" and denominated with the letter "K". In such a case zero *drop-out* probability value was assumed for that component.

Upon application of Monte Carlo simulation *LRmix Studio* software sets the limits of *drop-out* probability distribution in the range from 5 to 95 percentiles (Gill, Haned, 2013). During statistical analyses the likelihood ratio was calculated while maintaining the conservative approach, which uses the smaller quintile of LR value distribution as the measure of the evidential value. In the majority of cases the reported LR value in fact corresponded with 5% percentile of *drop-out* probability distribution achieved by Monte Carlo simulation.

Experiments design

By carrying out statistical analyses for each simulated DNA mixture (thus for each of the 80 DNA mixtures composed of 24 referential samples), the person of interest (POI) was treated in sequence as each of 24 referential samples, which gave 24 comparisons for each DNA mixture. The statistical analyses were carried out according to the following assumptions:

(2)
$$LR = \frac{\text{POI} + \text{UN} + \text{UN}}{3 \text{ UN}} \text{ or } LR = \frac{\text{POI} + \text{UN}}{2 \text{ UN}}, \text{ where}$$

POI - person of interest,

UN - unknown person.

In 37 DNA mixtures one of the components could have been *a priori* conditioned as a "known person" – K. In the profiles of these components all the allele peak heights were above the stochastic threshold, i.e. 200 RFU. This provided additional several dozen comparisons for each of 37 mixtures, as expressed by the following formulas:

(3)
$$LR = \frac{K+POI}{2 \text{ UN}}, LR = \frac{K+POI}{K+\text{ UN}},$$

$$LR = \frac{\text{K+POI+UN}}{3 \text{ UN}}, LR = \frac{\text{K+POI+UN}}{\text{K+2 UN}}, \text{ where}$$

POI – person of interest, UN – unknown person, K – known person

Eventually, 208 comparisons were analysed, in which POI is a real component of DNA mixture and 1712 comparisons, in which POI is not a real component of DNA mixture.

Results and discussion Analysis of single DNA profiles

The assessment of single donor DNA profiles by *LRmix Studio* software was performed according to formula (1). LR values reported by *LRMIX Studio* software for 27 single DNA profiles, for which genotypes in each *locus* were unambiguous (with no *drop-out*) were obtained in the range from 1.58 x 10²⁸ to 1.32 x 10³² (that is log10 (LR) value were reported in the range from 28.54 to 32.14). Multiple analysis of the same DNA profile on a validated software gave repeatable results.

Analyses of DNA mixtures

Comparisons were performed of LR values for DNA mixtures and single DNA profiles, in which the person of interest (POI) is the real component of both the analysed samples. As expected, likelihood ratios for all the analysed DNA mixtures did not in any case exceed the likelihood ratio obtained for a single DNA profile of the person of interest. Moreover, a multiple analysis of the same DNA mixtures with the software subject to validation gave repeatable results.

Testing of model performance

In order to verify performance of the model implemented in *LRmix Studio* the researchers used results of profiling

a series of dilutions of the referential DNA sample (Table 2). It was demonstrated that LR values reported by the LRmix Studio software estimated according to formula (1) for individual DNA profiles decreased accordingly with dropping amount of template DNA in the sample (1-0.03 ng), i.e. from the maximum value for the full profile (log10 (LR) = 29.21) towards the value of LR = 0, resulting from the occurrence of the drop-out phenomenon (Taylor, 2014). After taking into account the drop-out probability estimated using Monte Carlo calculations, all LR results obtained for incomplete DNA profiles were positive, supporting the H₂ hypothesis. At the same time, as expected, correspondingly lower LR values for incomplete profiles were obtained as the drop-out phenomenon intensified, and the estimated drop-out probability values increased proportionally to the increasing number of alleles dropping out in sequential sample dilutions.

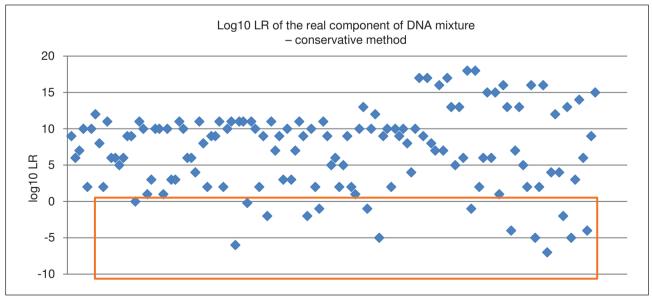
Analyses of samples in several repetitions

The analytical process involved using the results of profiling DNA mixtures from three people, each amplified three times. Statistical analyses were performed separately for individual DNA profiles obtained from independent amplifications of the same DNA extract, followed by simultaneous analyses of three repeated amplifications of the same sample. In the case of a low amount of DNA template in a sample, stochastic effects in subsequent PCR repeats of the same sample cause a large variation in peak height, heterozygote balance and in the number of drop-out phenomena (Gill et al., 2000; Benschop et al., 2011). With respect to DNA profiles with occurring drop-out, the simultaneous statistical analysis of three repetitions of amplification in LRmix Studio, taking into account the same POI component, in most cases guaranteed

Table 2. Result of LR value estimation for single DNA profiles generated by series of dilutions of one DNA sample in two repetitions: a, b.

Template DNA quantity (ng)	Number of drop-outs	Log10(LR)	Value of probability P(D)
1a	0	29.21	0
1b	0	29.21	0
0.5a	1	27.33	0.01
0.5b	0	29.21	0
0.25a	3	24.31	0.02
0.25b	5	24.71	0.03
0.125a	11	19.64	0.18
0.125b	7	20.66	0.09
0.06a	19	11.23	0.36
0.06b	22	10.81	0.44
0.03a	34	5.16	0.68
0.03b	26	9.46	0.50

Sample no.	Real component POI	Number of drop-outs	Log10(LR)	Common Log10(LR) for three replications
0.8a		0, 7 , 13	5.73	
0.8b	В	0, 7 , 14	6.56	8.46
0.8c		0, 8 , 13	4.86	
0.6a		0, 4, 8	0.005	
0.6b	С	0, 7, 8	2.03	3.43
0.6c		0, 5, 12	-1.62	
0.4a		7 , 0	6.73	
0.4b	A	6 , 0	6.05	4.63
0.4c		14.0	1 72	


Table 3. Results of biostatistical analysis from three samples amplified in three repetitions: a, b, c.

a higher LR value than in the case of analysing each amplification repetition separately (Table 3). The higher was the homogeneity of individual results estimated for three sequential repetitions, the more of repeated tests results for the joint analysis exceeded the LR values for single test results. However, when the results of repeated tests were divergent, the LR result for their joint analysis might have been smaller than the LR values obtained for individual test results, which can be seen on the example of samples marked with number 0.4.

False negative results (LR < 1/H_n is TRUE)

Testing of the inclination to false negative exclusions comprises a test of system sensitivity and refers to assessment of software ability to accurate estimation of LR supporting the assumptions as to presence

of DNA originating from a real person in the DNA profiling results (Scientific Working Group on DNA Analysis Methods, 2016; Moretti et al., 2017). Figure 1 shows LR results for comparisons, in which POI was the real component of DNA mixtures. Calculations of LR value were performed by the conservative method. For 20 DNA mixtures from three persons (out of 144 analysed mixtures) LR values were below 1 while DNA of the person of interest (POI) is a real component of a given mixture (H is real) and therefore for the above cases false negative results were obtained. In Figure 1 those results are marked with an orange frame. For two-donor DNA mixtures 10 such cases occurred (in 64). All the cases of false exclusions (LR < $1|H_n$ is "TRUE") were presented in Table 4. False negative LR results were characterised as a limitation of the software, however, they consider

Fig. 1. Results of comparisons, in which a sample from a person of interest is a real component of DNA mixture (or H_p is true). The calculations of LR value were carried out by the conservative method. The false negative cases are marked with the orange frame.

Table 4. All the cases of DNA mixtures, for which results of statistical analysis upon taking into account the real component gave LR < 1.

POI is a person of interest. DNA – DNA quantity for each component of the mixture (marked in bold fonts for POI). *Drop-out* – number of observed allele *drop-outs* counted for POI. LR – value of likelihood ratio estimated by means of *LRmix Studio*.

Sample no.	POI	DNA (pg)	Number of drop-outs	LR
6.1	Т	100: 40 :40	1, 7, 0	0.4
2.3	I	250:250: 40	0, 0, 7	4e-06
3.3	L	250:250: 40	0, 0, 11	1e-04
1.2	Е	250: 40 :40	1, 14, 9	0.23
5.3	R	250:250: 40	0, 0, 11	3e-05
2.4	I	500:40: 40	0, 3, 10	0.0012
3.4	L	500:40: 40	0, 7, 9	0.03
1.5	F	500:250: 40	0, 0, 7	0.001
2.2	I	250:40: 40	0, 2, 5	0.9
2.5	I	500:250: 40	0, 0, 8	4e-05
0.5	В	150: 6 :30	0, 19, 13	3e-06
0.7a	В	300: 6 :30	20, 22, 11	1e-04
0.8a	С	300:30: 30	0, 6, 13	0.005
0.2b	В	300: 30	0, 15	0.02
0.5b	В	150: 6 :30	2, 27, 22	2e-04
0.5c	В	150: 6 :30	0, 26, 11	8e-06
0.6a	С	150:30: 30	0, 4, 8	0.5
0.6c	С	150:30: 30	0, 5, 12	0.02
0.7b	В	300: 6: 30	0, 23, 11	3e-05
0.8b	С	300:30: 30	0, 7, 14	2e-4
0.7b	В	300: 6 :30	0, 23, 11	9e-05
0.14	Н	100: 40	4, 27	2e-05
0.15	J	100: 40	9, 29	0.0162
0.16	В	250: 40	8, 27	1e-04
0.19	Н	250: 40	0, 13	0.5
0.25	I	40 :100	15, 0	0.0088
0.27	С	40 :300	18, 0	0.3
0.30	I	40 :300	17, 0	0.1102
0.17	D	250: 40	2, 21	0.02

one particular category of DNA mixtures – every time, when POI contribution in the mixture was equal to or lower than 40 pg.

False positive indications (LR > $1/H_p$ is FALSE)

Figure 2 shows LR results for comparisons, in which POI is not a real component of a DNA mixture. In 1712 comparisons there were no false positive

indications, i.e. results with positive LR values (LR values a little above 1) in the situation when DNA of a person of interest was not a real component of a given mixture (H_d is real). The LR calculations were carried out by means of the conservative method. In Figure 2 it can be observed that none of the results exceeded the borderline LR = 1 value marked with the red line.

LR value as function of allele drop-out

The phenomenon of drop-out has an immense influence on interpretation of DNA profiles from crime scene stains by creating a risk of false inclusions or exclusions. Probabilistic systems, such as LRmix Studio designed particularly for samples with low DNA contents may allow the Laboratory to extend the range of DNA mixture interpretation by exactly such cases. It is still not possible to carry out probabilistic analyses of all high order DNA mixtures. It the evidential profile drops below a certain level or too large number of alleles has dropped out, its interpretation may still be impossible (Coble et al., 2016). During the analyses aiming at validation it is particularly important to determine the number of drop-outs, at which a DNA mixture does not qualify any longer for interpretation by means of probabilistic models. Figures 3 and 4 present the way of relating LR values estimated by the conservative method with use of LRmix Studio software with the number of drop-outs (for POI profile) in cases, where POI is the real component of DNA mixture (H_n is true) and the indications of the software remained negative. When H_a is true the limit for observed LR > 1 values obtained with LRmix Studio amounts to 4 occurrences of drop-out for DNA mixtures from up to three persons and up to 12 drop-outs for DNA mixtures from two persons. The set limits constitute the lowest number of drop-outs observed in DNA profiling results, above which false negative LR < 1 values were reported. The result of statistical analysis of DNA profiles with a larger number of drop-outs may be unreliable.

Conclusions

The process of checking performance of the qualitative model, as well as reliability and repeatability of results reported by *LRmix Studio* involved analyses of single

DNA profiles and mixtures from two and three donors with known DNA profiles. The aim of the study was to determine the likelihood ratio for a broad range of comparisons of low template DNA traces, where quality causes the largest interpretation difficulties. Due to that samples were prepared by combining two or three components in various proportions and materials of high content of DNA template (500 pg, 300 pg, 250 pg) were used, and in addition to that always one of two components of low DNA template level (100 pg, 40 pg, 30 pg, 6 pg). Moreover, some samples underwent a process of degradation so that the DNA mixtures best reflected real traces recovered at crime scenes. In this way, partial profiles were obtained with increased drop-out and locus drop-out (when entire locus is not amplified) phenomena, which are widely observed in analyses of LT-DNA types of traces (Gill, Buckleton, 2010; Buckleton et al., 2016). The validation procedure involved 250 comparisons for real components of DNA mixtures and 1712 comparisons for materials that were not real components of DNA mixtures. To sum up, the results of the analyses demonstrated that the LRmix Studio software performed according to the expectations. Probabilities of genotypes determined by the system were adequate to the expectations and the statistical results were repeatable and justified.

Identifying the limitations of the probabilistic software by internal validation is crucial for determining the ranges of DNA profiles that can undergo a statistical analysis in the Laboratory. Due to that every false result was characterized as software limitation (with an assumption of LR = 1 as the borderline value). Out of 1712 tests, 86% of DNA mixtures gave LR results supporting the inclusion hypothesis and 100 falsely selected POI obtained LR results supporting the exclusion hypothesis. Thus, the validated method meets the condition of striving to minimise the number

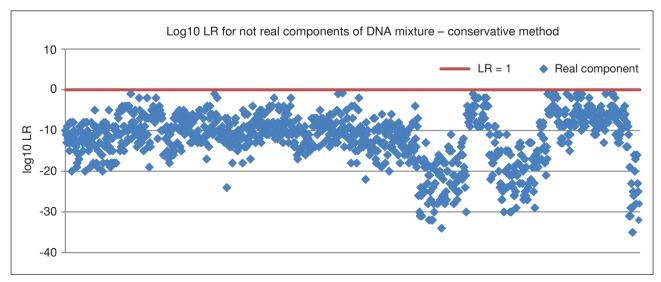
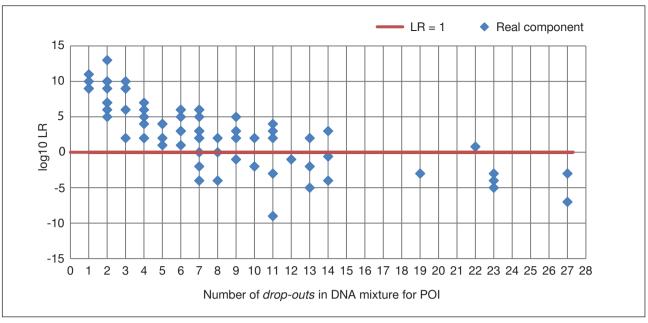
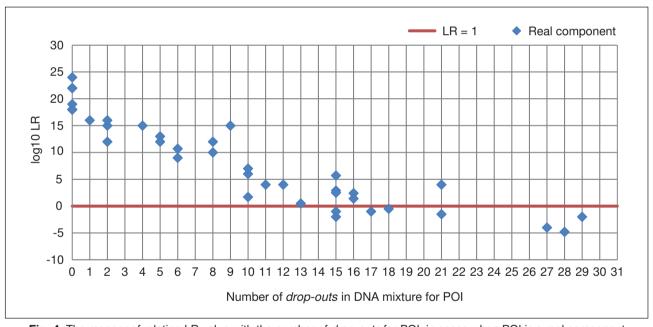




Fig. 2. Results of comparisons, in which POI is not a real component of the DNA mixture (H_p is false). Calculations of LR value were performed by means of the conservative method. LR = 1 value is marked with the red line.

Fig. 3. The manner of relating LR value with the number of *drop-outs* for POI, in cases when POI is a real component of DNA mixture from three donors.

Fig. 4. The manner of relating LR value with the number of *drop-outs* for POI, in cases when POI is a real component of DNA mixture from two donors.

of false positive matches. At the same time, it was confirmed that applying the conservative method in statistical calculations (Bleka et al., 2016), as well as analysis of DNA mixtures analysis in STR multiplexes containing at least 23 short tandem repeats limits the occurrence of false positive results both in case of two-component and thee-component mixtures. Minimising false positive indications is achieved at the cost of a slight increase in false negative results (Bleka et al., 2016). However, in every case false POI exclusions referred to DNA mixtures that were complex in terms

of quality and made of material from two and three donors, in which the real POI component had a low concentration of DNA template in the PCR reaction.

The conducted validation tests have proven that *LRmix Studio* can be successfully implemented in a forensic laboratory as a reliable tool for interpretation of DNA profiling results by means of probabilistic models based on estimation of likelihood ratio value. The statistical evaluation may refer both to complete DNA profiles as results of LT-DNA traces analyses. The application of this method allows forensic DNA

experts to bypass the need of taking binary decisions in the event of occurring stochastic effect and alleles below the detection limit. Thus the validated software decreases the subjectivism in assessing analytical results and contributes to standardisation of formulate conclusions.

Sources of Figures and Tables: Authors

Bibliography

- Benschop, C.C.G., Van Der Beek, C.P., Meiland, H.C., Van Gorp, A.G.M., Westen, A.A., Sijen, T. (2011). Low template STR typing: Effect of replicate number and consensus method on genotyping reliability and DNA database search results. Forensic Science International: Genetics, 5(4), https://doi.org/10.1016/j. fsigen.2010.06.006.
- Bleka, Ø., Benschop, C.C.G., Storvik, G., Gill, P. (2016). A comparative study of qualitative and quantitative models used to interpret complex STR DNA profiles. Forensic Science International: Genetics, 25, https://doi.org/10.1016/i.fsigen.2016.07.016.
- Buckleton, J., Bright, J.A., Taylor, D. (2016). Forensic DNA evidence interpretation. W: J. Buckleton, J.A. Bright, D. Taylor (red.), Forensic DNA Evidence Interpretation. Boca Raton: CRC Press, https://doi.org/10.4324/9781315371115.
- Coble, M.D., Buckleton, J., Butler, J.M., Egeland, T., Fimmers, R., Gill, P., ... Prinz, M. (2016). DNA Commission of the International Society for Forensic Genetics: Recommendations on the validation of software programs performing biostatistical calculations for forensic genetics applications. Forensic Science International: Genetics, 25, https:// doi.org/10.1016/j.fsigen.2016.09.002.
- 5. ENFSI (2015). Best Practice Manual for the internal validation of probabilistic software to undertake DNA mixture interpretation (n.d.).
- Gill, P., Buckleton, J. (2010). A universal strategy to interpret DNA profiles that does not require a definition of low-copy-number. *Forensic Science International: Genetics*, 4(4), https://doi.org/10.1016/j. fsigen.2009.09.008.
- Gill, P., Gusmão, L., Haned, H., Mayr, W.R., Morling, N., Parson, W., ... Weir, B.S. (2012). DNA Commission of the International Society of Forensic Genetics: Recommendations on the evaluation of STR typing results that may include drop-out and/or drop-in using probabilistic methods. Forensic Science International: Genetics, 6(6), https://doi. org/10.1016/j.fsigen.2012.06.002.
- Gill, P., Haned, H. (2013). A new methodological framework to interpret complex DNA profiles using likelihood ratios. Forensic Science International: Genetics, 7(2), https://doi.org/10.1016/j.fsigen.2012.11.002.
- Gill, P., Whitaker, J., Flaxman, C., Brown, N., Buckleton, J. (2000). An investigation of the rigor of interpretation rules for STRs derived from less than 100 pg

- of DNA. Forensic Science International, 112(1), https://doi.org/10.1016/S0379-0738(00)00158-4.
- 10. Haned, H., Slooten, K., Gill, P. (2012). Exploratory data analysis for the interpretation of low template DNA mixtures. *Forensic Science International: Genetics*, *6*(6), https://doi.org/10.1016/j. fsigen.2012.08.008.
- Haned, H., Benschop, C.C.G., Gill, P D., Sijen, T. (2015). Complex DNA mixture analysis in a forensic context: Evaluating the probative value using a likelihood ratio model. Forensic Science International: Genetics, 16, https://doi.org/10.1016/j.fsigen. 2014.11.014.
- 12. Haned, H., Gill, P. (2011). Analysis of complex DNA mixtures using the Forensim package. *Forensic Science International: Genetics Supplement Series*, *3*(1), https://doi.org/10.1016/j.fsigss.2011.08.039.
- 13. Haned, H., Jong, J. De. (2016). *LRmix Studio 2.1 user manual*. 1–21.
- 14. Moretti, T.R., Just, R.S., Kehl, S.C., Willis, L.E., Buckleton, J.S., Bright, J.A., ... Onorato, A.J. (2017). Internal validation of STRmix[™] for the interpretation of single source and mixed DNA profiles. *Forensic Science International: Genetics*, *29*, https://doi.org/10.1016/j.fsigen.2017.04.004.
- Scientific Working Group on DNA Analysis Methods. (2016). Scientific Working Group on DNA Analysis Methods Validation Guidelines for DNA Analysis Methods SWGDAM Validation Guidelines for DNA Analysis Methods. (December 2016), https://docs. wixstatic.com/ugd/4344b0_813b241e8944497e99 b9c45b163b76bd.pdf.
- Steffen, C.R., Coble, M.D., Gettings, K.B., Vallone, P.M. (2017). Corrigendum to 'U.S. Population Data for 29 Autosomal STR Loci' [Forensic Sci. Int. Genet. 7 (2013) e82–e83](S1872497312002712) (10.1016/j.fsigen.2012.12.004). Forensic Science International: Genetics, 31, https://doi.org/10.1016/j.fsigen.2017.08.011
- 17. Taylor, D. (2014). Using continuous DNA interpretation methods to revisit likelihood ratio behaviour. *Forensic Science International: Genetics*, *11*(1), https://doi.org/10.1016/j.fsigen.2014.03.008.
- Welch, L.A., Gill, P., Phillips, C., Ansell, R., Morling, N., Parson, W., ... Bastisch, I. (2012). European Network of Forensic Science Institutes (ENFSI): Evaluation of new commercial STR multiplexes that include the European Standard Set (ESS) of markers. Forensic Science International: Genetics, 6(6), https://doi.org/10.1016/j.fsigen.2012.03.005.
- Yoon, J. H., Lee, C.S., O'Connor, T.R., Yasui, A., Pfeifer, G.P. (2000). The DNA damage spectrum produced by simulated sunlight. *Journal of Molecular Biology*, 299(3), https://doi.org/10.1006/ jmbi.2000.3771.

Translation Ewa Nogacka

REGULAMIN publikowania prac w "Problemach Kryminalistyki"

- Redakcja "Problemów Kryminalistyki", zwana dalej Redakcją, przyjmuje do publikacji wyłącznie oryginalne prace teoretyczne i eksperymentalne, syntetyzujące, analityczne i kazuistyczne z zakresu kryminalistyki i dziedzin pokrewnych oraz recenzje monografii naukowych autorstwa jednej lub kilku osób, zwanych dalej Autorem. Złożone teksty nie mogą być opublikowane wcześniej w innych miejscach, ani też w tym samym czasie rozpatrywane pod kątem publikacji w innych czasopismach.
- Redakcja nie zwraca autorom nadesłanych prac, a także zastrzega sobie prawo skracania i adiustacji tekstów oraz zmiany tytułów i śródtytułów.
- 3. Redakcja zastrzega sobie możliwość odmowy przyjęcia artykułu bez podania przyczyn.
- 4. Prace napisane niezgodnie z niniejszym regulaminem nie będą publikowane.
- Prace należy przesyłać pocztą elektroniczną na adres: clkpk@policja.gov.pl bądź dostarczyć do redakcji na nośnikach elektronicznych (CD, DVD, pendrive, które nie podlegają zwrotowi Autorowi).
- 6. Teksty nie powinny przekraczać 40 000 znaków wraz z rycinami, tabelami, abstraktem i bibliografią, powinny być sporządzone czcionką znormalizowaną (Times New Roman), wielkość czcionki 12, odstępy 1,5 wiersza, z marginesem 2,5 cm z lewej i prawej strony. Zapis powinien być dokonany podstawowym krojem pisma bez wyróżnień.
- 7. Do każdego tekstu należy dołączyć abstrakt (maksymalnie 150 słów) oraz od 3 do 7 słów kluczowych.
- 8. Prace mogą być dostarczone w języku polskim lub angielskim.
- 9. Prac nie należy podpisywać. Przesłane prace nie mogą zawierać danych pozwalających zidentyfikować autora tekstu. W osobnym pliku należy umieścić imię i nazwisko autora (autorów), tytuł publikacji, nazwę instytucji, w której zatrudniony jest autor, zajmowane stanowisko, dane korespondencyjne, numer telefonu, adres e-mail oraz, jeśli wymagane, informacje dotyczące źródeł finansowania dla prowadzonych badań.
- Nadsyłane prace będą recenzowane przez dwóch recenzentów zgodnie z zasadą double--blind review, co oznacza to, że recenzenci nie znają tożsamości autora tekstu, a autor nie

- wie, kto jest recenzentem. Raz w roku na stronie internetowej wydawnictwa zostają umieszczone nazwiskarecenzentówwspółpracującychzczasopismem. Recenzenci wybierani są spoza instytucji, do której afiliowany jest jej autor.
- 11. W sytuacji gdy ocena jest pozytywna, ale recenzent wskazuje na konieczność zmian i poprawek, Autor jest zobowiązany do ustosunkowania się do uwag i ewentualnego uwzględnienia sugerowanych poprawek.
- 12. Redakcja przyjęła i stosuje Kodeks Etyki Publikacyjnej. Wydawca, Autorzy i Recenzenci są zobowiązani do przestrzegania zasad etyki, a w szczególności zasady odpowiedzialności, uczciwości, przejrzystości i poufności. Redakcja przypomina, że ghostwriting oraz guest authorship są przejawem nierzetelności naukowej, a wszelkie wykryte przypadki będą demaskowane i dokumentowane, włącznie z powiadomieniem odpowiednich podmiotów (instytucje zatrudniające autorów, towarzystwa naukowe, stowarzyszenia edytorów naukowych itp.). W celu przeciwdziałania wystepowaniu tych zjawisk Redakcja wymaga od poszczególnych autorów ujawnienia wkładu w powstanie publikacji.
- 13. Ryciny i tabele powinny być opatrzone tytułami oraz źródłami, z którego pochodzą (np. adres internetowy z podaniem daty dostępu). Ich liczbę należy ograniczyć do minimum niezbędnego dla zrozumienia tekstu. Podpisy pod rycinami oraz opisy tabel powinny być sporządzone w języku polskim lub angielskim, a numery zapisane cyframi arabskimi. Rozdzielczość zdjęć powinna wynosić 300 dpi. Ryciny i fotografie należy lokalizować w tekście za pomocą podpisów, a wszelkie materiały graficzne załączać osobno (nie w tekście).
- 14. Autor składając tekst do publikacji oświadcza, że przesłany tekst jest jego autorstwa i przysługują mu w pełni (wyłączne) osobiste i majątkowe prawa autorskie do tekstu. Autor oświadcza również, że ma prawo do dysponowania umieszczonymi przez niego w utworze materiałami takimi, jak np. ryciny, grafiki, wykresy itp., oraz że ich wykorzystanie w dziele nie narusza praw osób trzecich.
- Odsyłacze do prac przywoływanych w tekście oraz bibliografia powinny zostać sporządzone zgodnie ze standardami systemu APA (American Psychological Association), wersją szóstą:

REGULAMIN publikowania prac w "Problemach Kryminalistyki"

 a) odsyłacze do przywoływanych prac – w przypadku powoływania się na prace innych autorów zawsze należy podać nazwisko autora/ autorów oraz rok publikacji.

Przykłady:

- jeden autor:

Według Malinowskiego (2015)...

W słowniku języka polskiego (Doroszewski, 1961)...

dwóch autorów:

Według Widackiego i Dukały (2015)...

W badaniach poligraficznych stwierdza sie (Widacki, Dukała, 2015)...

od trzech do pięciu autorów – wszystkie nazwiska podajemy wyłącznie za pierwszym razem powoływania się na daną pracę w tekście, w kolejnych odsyłaczach podajemy wyłącznie nazwisko pierwszego autora oraz skrót "i in.".

Jak w swoim artykule wykazali Bajerlein, Wojterska, Grewling i Kokociński (2015)...

We wspomnianym wyżej artykule Bejrlein i in. (2015) wykazali....

Jak wykazały badania (Bajerlein i in., 2015)...

 sześciu autorów i więcej – należy podać nazwisko tylko pierwszego autora, dodając skrót "i in." oraz rok (za każdym razem – zarówno dla pierwszego, jak i następnych odsyłaczy). b) dosłowne cytowania – jeśli w pracy pojawia się dosłownie cytowany fragment tekstu, powinien on zaczynać się i kończyć cudzysłowem, a bezpośrednio za cytatem należy podać źródło cytatu z numerami stron:

"......" (Kowalski, 2016, s. 31)...

 c) bibliografię należy zredagować alfabetycznie w oparciu o podane przykłady:

Arntzen, F. (1989). *Psychologia zeznań świadków*. Warszawa: Państwowe Wydawnictwo Naukowe.

Buller, D.B., Burgoon, J.K. (1996). Interpersonal Deception Theory. *Communication Theory*, *6*(3), 203–242.DOI: 10.1111/j.1468-2885.1996.tb00127.x

Sweetser, E.E. (1987). The definition of lie: An examination of the folks models underlying a semantic prototype. W: D. Holland (red.), *Cultural Models in Language and Thought*. New York: Cambridge University Press.

Widacki, J. (red.). (2012). *Kryminalistyka*. Warszawa: C.H. Beck.

- Po zakwalifikowaniu pracy do publikacji z Autorem zostaje zawarta umowa o przeniesieniu na Redakcję autorskich praw majątkowych.
- 17. Za publikację w kwartalniku Autorowi nie przysługuje wynagrodzenie.
- 18. Wersją pierwotną (referencyjną) czasopisma jest wydanie papierowe. "Problemy Kryminalistyki" są dostępne także na stronie internetowej wydawnictwa.

TERMS AND CONDITIONS of publishing in "Issues of Forensic Science" / "Problemy Kryminalistyki"/

- The editorial board of "Issues of Forensic Science", referred to as "the Editorial board" accepts only original articles of theoretical and experimental content in form of synthetic, analytical and casuistic work that covers forensic science and related areas as well as reviews of scientific monographic works of one or more authors which are later referred to as "the Author". The submitted works can neither be published in any other form, nor in the reviewing process by other publishers simultaneously.
- 2. The editorial board does not return the articles to its author. The board reserves the right to shortening and adjusting of the text as well as to modifying its titles and subtitles.
- 3. The board reserves the right to dismiss the submitted work without detailed reasons.
- 4. The works written against the present terms and conditions will not be published.
- The works are to be send to the e-mail address: clkpk@policja.gov.pl or provided to the board on a digital data carrier such as CD, DVD or USB drive (the carriers are not to be returned to the author by the board).
- 6. The number of characters in submitted text should not exceed 40 000 including figures, tables, abstract and bibliography. The text should be formatted in Times New Roman, size 12, spacing of 1,5 lines, margins of 2,5 cm width on both sides of the document. The contents are to be made with the basic formatting, with no highlights.
- 7. Every submitted article is to be accompanied by an abstract (max. 150 words) and 3 to 7 key words.
- 8. The submitted article should be written in Polish or English.
- 9. The submitted article cannot be signed it cannot bear any signs that may lead to identification of the author of the work. This data (first and last name(s) of the author(s), title of the publication, name of the author's employing institution, their position, address, phone number, e-mail, and, if required, information regarding the funding of the conducted research) should be enclosed in a separate file.
- The submitted articles will be subject to review by two reviewers in accordance with doubleblind review principle, which entails that both reviewers and author(s) are unaware of each

- other's identities. Reviewers are selected from outside the institution to which the author is affiliated (authors are affiliated). Once a year, in the publishing house's website, the last names of our reviewers will be published.
- 11. If the article receives positive feedback from the editor, but it is suggested that modifications and corrections be introduced, the author is obliged to answer the comments and consider introducing the suggested modifications.
- 12. The editorial office has adopted and applies the Code of Publication Ethics. The Publisher, Authors and Reviewers are obliged to comply with the principles of ethics, in particular the principles of responsibility, integrity, transparency and confidentiality. The board recalls that ghostwriting and guest authorship are manifestation of scientific unreliability, therefore all detected incidents will be revealed and documented, including notification of relevant parties (the institutions that employ authors, scientific societies, association of scientific editors etc.). In order to counteract occurrence of such incidents, the Editorial Board requires from all the authors revealing the contributions to creation of their works.
- 13. Figures and Tables should be provided with titles and information on their sources (e.g. website address with a date of accessing). Their number would be limited to a minimum necessary to understand the text. Captions under Figures and descriptions of Tables should be made in Polish or English language; numbers of Figures and Tables should be expressed in Arabic digits. Photographs ought to have 300 dpi resolution. The location of Figures and Photographs in the text should be marked by the captions and all graphic materials should be delivered in separate appendices (not in the text).
- 14. Upon submitting a text for publication the Author declares that the text sent is of his/her authorship and he/she possesses full (exclusive) personal and property right to it. The author also declares, that he has the right to dispose of materials placed in the work, such as: Figures, graphics, Tables, etc., and that their use in the work does not infringe the rights of third parties.
- 15. References to other works in the text and Bibliography should be made according to APA (American Psychological Association) system, version 6:

TERMS AND CONDITIONS of publishing in "Issues of Forensic Science" / "Problemy Kryminalistyki"/

a) references to other works – in case of referring to works of other authors the name of author/authors and year of publishing should always be given.

Examples:

- one author:

According to Malinowski (2015)... In Polish Language Dictionary (Doroszewski, 1961)

- two authors:

According to Widacki and Dukała (2015)... It is stated in Polygraph examinations (Widacki, Dukała, 2015)...

- three to five authors - all the names are given only in the first instance of referring to a given work in the text; in subsequent references exclusively the name of first author and an abbreviation "et al."

As Bajerlein, Wojterska, Grewling and Kokociński (2015) demonstrated in their article...

In the article mentioned above Bajerlein et al. (2015) demonstrated...

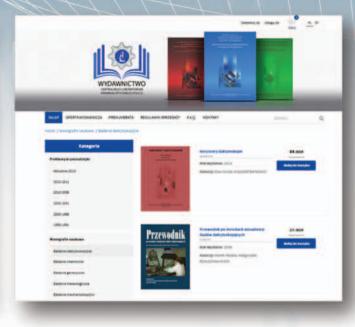
As research has shown (Bajerlein et al., 2015)...

 six and more authors – the name of the first author followed by the abbreviation "and others" as well as the year should be provided each time for the first and subsequent links. b) direct quotations – if a direct quotation from another work is included in the text, it should start and end with quotation marks and directly after the quotation the source with page numbers should be given:

"....." (Kowalski, 2016, p. 31)

c) Bibliography should be made in the alphabetical order basing on the following examples:

Arntzen, F. (1989). *Psychologia zeznań świadków*. Warsaw: Państwowe Wydawnictwo Naukowe.


Buller, D.B., Burgoon, J.K. (1996). Interpersonal Deception Theory. *Communication Theory*, *6*(3), 203–242.DOI: 10.1111/j.1468-2885.1996.tb00127.x

Sweetser, E.E. (1987). The definition of lie: An examination of the folks models underlying a semantic prototype. W: D. Holland (ed.), *Cultural Models in Language and Thought*. New York: Cambridge University Press.

Widacki, J. (ed.). (2012). *Kryminalistyka*. Warszawa: C.H. Beck.

- 16. Upon approval of the work for publication an Agreement on Transfer of Copyright to the Editor is concluded with the author.
- 17. The author is not entitled to a remuneration for the publication in the Quarterly.
- 18. The primary (referential) version of the Quarterly is the hard copy. "Issues of Forensic Science" is also available on the Editorial House's website.

Strona Wydawnictwa CLKP

Strona czasopisma naukowego "Problemy Kryminalistyki"

www.problemykryminalistyki.pl

https://problemykryminalistyki.pl/pl/shop/i

Stawiamy na rozwój – nowa strona internetowa Wydawnictwa CLKP

Przygotowujesz artykuł z zakresu kryminalistyki i poszukujesz wartościowych opracowań? A może wkrótce czeka Cię egzamin końcowy i potrzebujesz specjalistycznej literatury? Od dziś dostęp do pozycji wydawanych przez Centralne Laboratorium Kryminalistyczne Policji jest ułatwiony. Niedawno uruchomiliśmy stronę poświęconą kwartalnikowi "Problemy Kryminalistyki" oraz Wydawnictwu CLKP.

Na stronie www.problemykryminalistyki.pl znajduje się między innymi stopniowo uzupełniane archiwum, które docelowo będzie stanowić bazę wszystkich artykułów opublikowanych na łamach "Problemów Kryminalistyki" (z możliwością darmowego pobrania). Wyszukiwanie potrzebnych opracowań ułatwi przejrzysta wyszukiwarka.

Strona https://problemykryminalistyki.pl/pl/shop/i funkcjonuje jako sklep internetowy i zawiera aktualną ofertę pozycji opublikowanych przez Wydawnictwo CLKP. Serdecznie zachęcamy do odwiedzania nowo powstałych stron oraz do publikowania artykułów lub monografii naukowych za pośrednictwem naszego Wydawnictwa.

